نتایج جستجو برای: روش شبکه عصبی مصنوعی

تعداد نتایج: 387937  

ژورنال: :فصلنامه علمی پژوهشی پژوهش های اقتصادی (رشد و توسعه پایدار) 2008
رضا تهرانی وحید عباسیون

زمانبندی معاملات سهام مسأله¬ای بسیار مهم و مشکل به دلیل پیچیدگی بازار سهام است. آنچه اهمیت دارد پیش¬بینی روند قیمت سهام است که هدف اصلی در مباحث تحلیل تکنیکی است. گرچه این امر به دلیل دخالت عوامل متعدد بازار و روابط بین آنها چندان آسان نیست. به نظر می¬رسد استفاده از ابزارها و الگوریتمهای محاسباتی پیچیده¬تر مانند شبکه¬های عصبی مصنوعی در مدلسازی فرآیندهای غیر خطی که منتج به قیمت و روند سهام می¬شو...

ژورنال: :پژوهش های نوین در شیمی تجزیه 0

در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانول در حضور لیپاز تثبیت شده از مخمر آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید فن اتیل استر در سیستم ایزواکتان با استفاده از روش های شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان، ...

ژورنال: :iranian journal of applied animal science 0
m.a. norouzian department of animal science, college of abouraihan, university of tehran, tehran, iran m. vakili alavijeh department of mathematics, faculty of mathematical science, shahid beheshti university, tehran, iran

در این مطالعه ارتباط بین وزن­های تولد، از شیرگیری و پایان پروار با وزن دنبه 69 رأس گوسفند بلوچی توسط روش­های شبکه عصبی مصنوعی و رگرسیون چندگانه بررسی شد. هر دو روش با دقت بالایی وزن دنبه را پیش­بینی کردند. هر چند که میانگین خطا به صورت معنی­داری در روش شبکه عصبی مصنوعی کمتر از رگرسیون چندگانه بود. ضریب تعیین برآورد شده در روش شبکه عصبی مصنوعی (93/0) بالاتر از رگرسیون چندگانه (81/0) به دست آمد. ...

ژورنال: آبخیزداری ایران 2013
خزایی, مجید , صادقی, سیدحمیدرضا , میرنیا, سید خلاق ,

برآورد رسوب یکی از ارکان مدیریت حوزه‌های آبخیز می‌باشد. به‌همین جهت تاکنون تلاش‌های زیادی برای طراحی مدل‌های پیش‌بینی کننده آن و از جمله مدل-های شبکه ‌عصبی مصنوعی و مدل‌های رگرسیونی اشاره کرد. حال آن‌‌ که مقایسه عملکرد آن‌ها کم‌تر مورد توجه قرار گرفته است. بر این اساس پژوهش حاضر با هدف مدل‌سازی تلفات خاک ناشی از هفده رگبار به‌وقوع پیوسته در پلات‌های مستقر در جنگل تخریب‌شده و نشده در سه تکرار) د...

محمد شعبانی

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

ژورنال: :فصلنامه علوم و تکنولوژی محیط زیست 2011
محمد ابراهیم بنی حبیب محمد ولی پور سید محمودرضا بهبهانی

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل های استاتیک و دینامیک در شبکه های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می باشد. در این تحقیق آبدهی های ماهانه بین ...

ژورنال: آب و فاضلاب 2012
حامد شریفی دارانی علی طالبی علیرضا مقدم‌نیا محمد تقی دستورانی,

در دهه‌های اخیر به‌دلیل اهمیت یافتن مسئله آب و همینطور افزایش تمایل به محاسبه مقدار رواناب حاصل از بارش، توسعه و اجرای روشهای مناسب برای پیش‌بینی رواناب از روی داده‌های بارش به مسئله‌ای ضروری تبدیل شده است. یکی از این روشها که در بسیاری از رشته‌ها از جمله هیدرولوژی توسعه یافته است، استفاده از روشهای محاسبات نرم نظیر منطق فازی و شبکه‌های عصبی مصنوعی است. در این تح...

مدل‌سازی و پیش‌بینی سطح ایستابی چاه‌ها یکی از کار‌های اساسی برایرسیدن به مدیریت بهینه منابع آب می‌باشد. یکی از راه‌های پیش‌بینی سطح آب زیرزمینی استفاده از تکنیک‌های هوش مصنوعی نظیر شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن می‌باشد. هدف از این پژوهش بررسی کارایی روش شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن در پیش‌بینی سطح ایستابی آب زیرزمینی آبخوان دشت جیرفت می‌باشد. به این منظور از داده‌های سطح ایست...

یکی از جنبه‌های حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانه‌ای می‏باشد. هدف این مطالعه ارزیابی عملکرد مقایسه‌ای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود می‏باشد. مدل‏ها براساس آمار 104 حادثه وقوع همزمان ثب...

پارامترهای ژئومکانیکی و پتروفیزیکی مخزن همانند سرعت موج برشی، تخلخل و تراوایی از جمله پارامترهای مهمی هستند که در شبیه‌سازی مخازن هیدروکربوری و استراتژی‌های اکتشافی نقش موثری ایفا می کنند. اخیراً روش‌های هوش مصنوعی به‌منظور پیش‌بینی این پارامترها با استفاده از داده‌های چاه پیمایی به‌کاربرده شده‌اند. بااین‌حال پیش‌بینی ویژگی‌های مخازن ناهمگن همواره با دشوارهای بسیاری همراه است و به‌سختی پاسخ مناس...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید