نتایج جستجو برای: دیفرانسیل فردهلم
تعداد نتایج: 3721 فیلتر نتایج به سال:
هدف اصلی این پایان نامه، مطالعه ی معادلات انتگرال و انتگرو- دیفرانسیل است که شامل دو نوع مختلف از عملگرهای انتگرالی هستند. این معادلات، معادلات انتگرال و انتگرو- دیفرانسیل ولترا- فردهلم نامیده می شوند. این پایان نامه موضوعات زیر را شامل می شود: 1-قضایای وجود و یگانگی جواب معادلات انتگرال و انتگرو- دیفرانسیل ولترا- فردهلم خطی و غیرخطی را توسط قضیه ی نقطه ثابت باناخ مورد بحث قرار می ده...
در این پایا نامه، یک روش هم محلی با استفاده از توابع پایه ای سینک برای تقریب معادله انتگرال فردهلم نوع دوم، مسائل مقدار مرزی برای معادله انتگرال-دیفرانسیل فردهلم مرتیه نوع دوم و معادله انتگرال –دیفرانسیل ولترای مرتبه دوم توسعه شده است. روش سینک در حالتی که منفرد بودن در نقاط انتهایی رخ می دهد نسبت به روش های کلاسیک مزیت دارد. خواص روش هم محلی سینک لازم برای توسعه بعدی، ارائه شده و برای محاسبهٌ م...
در این پایان نامه به معرفی روش بسط سری-تیلور برای حل عددی معادلات انتگرال ولترا و فردهلم و معادلات انتگرو-دیفرانسیل ولترا و فردهلم می پردازیم. با استفاده از این روش ابتدا جواب مساله را بر حسب بسط سری-تیلور می نویسیم و سپس با جایگذاری در معادلات انتگرال و معادلات انتگرو-دیفرانسیل، به یک دستگاه معادلات جبری می رسیم که با حل دستگاه معادلات جبری بدست آمده تقریب خوبی از جواب معادله انتگرال و معادله ...
این پایان نامه شامل 5 فصل است که در فصل اول تعاریف مقدماتی است و فصل دوم خواص چندجمله ایهای برنولی و فصل سوم معادلات انتگرال دیفرانسیل فردهلم خطی با استفاده از این چندجمله ایها حل می شوند و در فصل چهارم معادلات انتگرال دیفرانسیل فردهلم غیر خطی با استفاده از این چندجمله ایها حل می شوند و در فصل اخر دستگاه معادلات انتگرال با این چندجمله ایها حل می شوند.
هدف اصلی این پایان نامه، مطالعه ی معادلات انتگرال و انتگرو- دیفرانسیل است که شامل دو نوع مختلف از عملگرهای انتگرالی هستند. این معادلات، معادلات انتگرال و انتگرو- دیفرانسیل ولترا- فردهلم نامیده می شوند. این پایان نامه موضوعات زیر را شامل می شود: 1-قضایای وجود و یگانگی جواب معادلات انتگرال و انتگرو- دیفرانسیل ولترا- فردهلم خطی و غیرخطی را توسط قضیه ی نقطه ثابت باناخ مورد بحث قرار میدهد...
در این پایان نامه، یک روش عددی که جوابی تقریبی به صورت یک چندجمله ای برای معادلات تفاضلی منفرد خطی مرتبه ی بالا تولید می کند، مورد بررسی قرار می گیرد. با استفاده از چندجمله ای های بسل و نقاط گره این روش عددی معادلات مذکور را به شکل ماتریسی تبدیل می کند.این معادله ی ماتریسی را به صورت یک دستگاه معادلات خطی با ضرایب بسل نامعین در می آوریم و با استفاده از آن جواب معادله را می یابیم. از ایده ی این ...
در این پایان نامه، حل عددی معادلات انتگرال فردهلم و ولترای نوع دوم و معادلات انتگرال-دیفرانسیل ولترا-فردهلم غیر خطی ارائه شده است. معادلات انتگرال فردهلم و ولترای نوع دوم را با استفاده از توابع هیبرید و هار حل می کنیم و جواب تقریبی به دست آمده را با این دو مجموعه از توابع مقایسه می کنیم. معادله انتگرال-دیفرانسیل ولترا-فردهلم را با استفاده از توابع هیبرید حل می کنیم. اساس این روش بر روی تقریب ...
در این پایان نامه روش بسط تیلور برای حل تقریبی معادلات انتگرو ـ دیفرانسیل کسری خطی شامل نوع فردهلم و ولترا ارائه شده است. به وسیله ی بسط تیلور مرتبه ی m ام یک تابع نامعلوم در یک نقطه ی دلخواه، معادله ی انتگرو ـ دیفرانسیل کسری خطی به یک دستگاه معادلات برای تابع نامعلوم و مشتقات تا مرتبه ی m ام آن، تحت شرایط اولیه ، می تواند تبدیل گردد. این روش یک راه حل ساده برای بدست آوردن جواب معادلات انتگرو ـ...
در این پایان نامه ابتدا به بررسی وجود جواب یکتا برای نوع خاصی از معادلات انتگرال که معادله انتگرال ولترای نوع دوم نامیده می شود، می پردازیم . سپس حل معادلات انتگرال فردهلم و ولترا با روش های هم محلی ، تبدیل دیفرانسیل و سریهای توانی را معرفی می کنیم سپس حل نوعی خاص از معادلات انتگرال – دیفرانسیل با روشهای هم محلی و سریهای توانی را ارائه خواهیم کرد . همچنین تعمیم تبدیل دیفرانسیل برای توابعی که شا...
در این پایان نامه حل عددی معادلات انتگرال فردهلم و ولترا خطی و غیر خطی، همچنین معادلات انتگرال-دیفرانسیل فردهلم و ولترا خطی با استفاده از روش توابع متعامد بلاک-پالس مورد بررسی قرار گرفته است. این پایان نامه شامل پنج فصل است که به صورت زیر ارائه گردیده اند. در فصل اول مقدمه ای کوتاه در مورد معادلات انتگرال و تعاریف و قضایای مربوط به این پایان نامه بیان شده است. در فصل دوم مختصر توضیحاتی از تواب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید