نتایج جستجو برای: دیاگرام voronoi
تعداد نتایج: 4807 فیلتر نتایج به سال:
We present some geometric relationships between the ordinary Voronoi diagram, and the Voronoi diagram in the Laguerre geometry. We derive from these properties an algorithm for the conversion of ordinary Voronoi diagrams into Voronoi diagrams in the Laguerre geometry.
Voronoi diagrams are a well-studied data structure of proximity information, and although most cases require Ω(n log n) construction time, it is interesting and useful to develop linear-time algorithms for certain Voronoi diagrams. For example, the Voronoi diagram of points in convex position, and the medial axis and constrained Voronoi diagram of a simple polygon are a tree or forest structure...
The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are ...
To support the need for interactive spatial analysis, it is often necessary to rethink the data structures and algorithms underpinning applications. This paper describes the development of an interactive environment in which a number of different Voronoi models of space can be manipulated together in real time, to (1) study their behaviour, (2) select appropriate models for specific analysis ta...
Given a set of compact sites on a sphere, we show that their spherical Voronoi diagram can be computed by computing two planar Voronoi diagrams of suitably transformed sites in the plane. We also show that a planar furthest-site Voronoi diagram can always be obtained as a portion of a nearest-site Voronoi diagram of a set of transformed sites. Two immediate applications are an O(n logn) algorit...
Given a set of compact sites on a sphere, we show that their spherical Voronoi diagram can be computed by computing two planar Voronoi diagrams of suitably transformed sites in the plane. We also show that a planar furthest-site Voronoi diagram can always be obtained as a portion of a nearest-site Voronoi diagram of a set of transformed sites. Two immediate applications are an O(n logn) algorit...
Abstract Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental construction technique (1989). The new algorithm has the following advantages over previous algorithms: l It can handle a much wider cl...
In this rst installment of a two-part paper, the underlying theory for an algorithm that computes the Voronoi diagram and medial axis of a planar domain bounded by free-form (polynomial or rational) curve segments is presented. An incremental approach to computing the Voronoi diagram is used, wherein a single boundary segment is added to an existing boundary-segment set at each step. The introd...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید