نتایج جستجو برای: خودریختی نرمال
تعداد نتایج: 12846 فیلتر نتایج به سال:
خودریختی ? از گروه g را یک خودریختی مرکزی گوییم هرگاه ? بر عناصر گروه g/z(g) همانی القا کند. به عبارت دیگر برای هر عنصر g از g، g-1 ?(g) عنصری از مرکز g باشد. مجموعه ی همه ی خودریختی های مرکزی گروه g را با نماد autc(g) نمایش می دهیم. این مجموعه یک زیرگروه نرمال از گروه aut(g) تشکیل می دهد. اگر g یک گروه آبلی باشد آنگاه autc(g) با aut(g) یکسان خواهد بود. گروه خودریختی مرکزی یک گروه متناهی در بح...
در این پایان نامه ابتدا به بررسی گراف های پوششی و ولتاژ گراف ها می پردازیم. سپس گراف های رأس-انتقالی غیرکیلی مکعبی از مرتبه4p^2 را مورد بررسی قرار داده و ثابت می کنیم هر گراف رأس-انتقالی غیرکیلی از مرتبه 4p^2 (7 < p) یک گراف پترسن تعمیم یافته غیرمتقارن است. همچنین نشان می دهیم که سیلو p-زیرگروه گروه خودریختی گراف رأس-انتقالی مکعبی از مرتبه 2p^n ( n ? p) یک زیرگروه نرمال...
در این پایان نامه نرمال بودن گراف های کیلیcay(sn, t) را بررسی می کنیم که در آن ها t یک مجموعه مولدمینیمال از ترانهش های sn است.قبلا ثابت شده که اگر گروه خودریختی گراف ترانهشی tra(t) بدیهی باشد،آنگاه aut(cay(sn, t))= r(sn).ما در این پایان نامه بدون ایجاد هیچ محدودیتی روی گروه خودریختی گراف ترانهشی ثابت می کنیم که گراف های کیلیcay(sn, t) نرمالند. فرض کنید t یک مجموعه از ترانهش های گروه متقارن sn...
فرض کنیم $g$ یک گروه باشد و $m$ و $n$ زیرگروه های نرمالی از $g$ باشند. در این صورت $aut^{m}_{n}(g)$ را گروه همه خودریختی های $g$ در نظر می گیریم که $g/m$ و $n$ را مرکزی می کنند. همچنین برای سادگی $aut^{z(g)}_{z(g)}(g)$ را با $c^{*}$ نمایش می دهیم. یکی از سوالات جالبی که در مورد خودریختی ها مطرح می شود یافتن شرط لازم و کافی برای گروه $g$ است به طوری که زیرگروه...
فرض کنیم g یک گروه باشد، "f ? aut(g)" را یک خود ریختی چند جمله ای گوییم هرگاه u_0,…,u_m?g و ?_1,…,?_m ? z موجود باشند به طوری که به ازای هر xاز g f(x)=u_0 x^(?_1 ) u_1…u_(m-1) x^(?_m ) u_m. مجموعه ی همه ی خودریختی های چندجمله ای گروه g را با paut(g) و زیرگروه تولید شده توسط تمام خودریختی های چندجمله ای گروه g را با (paut) ?(g) نشان می دهیم. یک خودریختی از گروه g را –iaخودریختی می نامیم هرگاه ...
بیشتر تلاش نظریه گروه ها در قرن بیستم معطوف به گروه های پوچتوان و بویژه pـگروه های متناهی و مسائل و حدس های برجسته در این زمینه بوده است که اگر چه به تعدادی از آن ها پرداخته شده است، اما هنوز حدس های قدیمی وجود دارند که به طور کامل پذیرفته و یا رد نشده اند. یک مسألهی قدیمی بیان می کند که: " آیا pـ گروه متناهی، به جز گروه دو وجهی ، وجود دارد که با گروه کامل خودریختی هایش یکریخت باشد؟!" ای...
برای یک گروه g ،فرض کنیدaut(g نشاندهنده گروه خودریختی های g باشدو خودریختی مرکزی g مجموعه ای از همه خودریختی در aut(g باشد که با هر خودریختی در inn(g جابه جا می شود.در این پایان نامه برخی نتایج درباره خودریختی مرکزی بدست می آوریم.
در این پایان نامه در مورد گروه خودریختی p-گروه های متناهی غیرآبلی ?-مولده g با زیرگروه جابه جاگر دوری برای عدد اول فرد p بحث می کنیم و با توجه به شرایط موجود روی گروه ها نمایشی برای گروه g ارائه می دهیم. سپس به محاسبه مرتبه های aut g و op(aut g) و inn g می پردازیم که در آن op(aut g) بزرگ ترین p-زیرگروه نرمال aut g است.
فرض کنیم g یک گروه باشد. گروه خودریختی های گروه g و زیرگروه متشکل از نقاط ثابت خودریختی ? از گروه g را به ترتیب با (aut(g و (c_g (? نشان می دهیم. خودریختی ? منظم یا بدون نقطه ثابت (تقریباً منظم) نامیده می شود اگر c_g (?)=1 ((c_g (? متناهی باشد). در این پایان نامه نتایج زیر مورد بررسی قرار می گیرد: 1. ساختار گروههای متناهی که خودریختی منظم از مرتبه عدد اول p دارند، به خصوص زمانی که p برابر 2 یا...
در این پایان نامه ما گروه خودریختی های مرکزی گروه های متناهی و ساختار آن در حالت های مختلف را مطالعه می کنیم و سپس به بررسی ارتباط بین گروه خودریختی های مرکزی با گروه خودریختی های داخلی، مرکز گروه خودریختی های داخلی و گروه شامل خودریختی های مرکزی که مرکز را به طور نقطه وار ثابت نگه می دارند، می پردازیم. همچنین شرایط لازم و کافی برای این که گروه خودریختی های مرکزی با گروه های ذکر شده برابر باشد ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید