نتایج جستجو برای: خودریختی غیر داخلی

تعداد نتایج: 95423  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1388

فرض کنیم g یک گروه باشد. گروه خودریختی های g را با (aut(g و گروه خودریختی های مرکزی g را با (autc(g نمایش می دهیم. خودریختی α از گروه g، یک خودریختی جابه جا شونده نامیده می شود هرگاه هرعضو گروه g با تصویرش تحت α جابه جا شود. مجموعه ی تمام خودریختی های جابه جا شونده را با a(g) نمایش می دهیم. در این پایان نامه خواهیم دید: 1) (a(g لزوماً یک زیرگروه از (aut(g نمی باشد. اما از ویژگی های جالبی برخور...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 0

نیلسن [14] آزمون جابجاگر زیر را برای بررسی اینکه چه موقع یک درون ریختی از گروه آزاد ff2< x,y; > یک خودریختی است ، را ارائه کرد. یک درون ریختی : f--->f یک خودریختی است اگر فقط اگر جابجاگر [ (x), (y)] مزدوج [x,y]+-1 در f باشد. او این آزمون را به عنوان نتیجه ای از کار معروف خودش ، که هر -ia خودریختی از f (یعنی خودریختی هایی که f را به هنگ زیر گروه جابجاگرش f، ثابت نگه می دارند.) یک خودریختی داخلی ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1392

در این رساله نشان می دهیم اگر ‎$g$‎ یک ‎$p$‎- گروه غیر آبلی باشد به طوری که ‎$c_{g}(z(phi (g)) eq phi (g)$‎، آن گاه ‎$g$‎ دارای یک خودریختی غیرداخلی از مرتبه ی ‎$p$‎ است که ‎$phi (g)$‎ را نقطه به نقطه ثابت نگه می دارد. به علاوه ثابت می کنیم اگر ‎$g$‎ یک ‎$p$‎- گروه باشد به طوری که ‎$vert gvert leq p^{2}$‎، آن گاه ‎$g$‎ دارای خودریختی غیر داخلی از مرتبه ی ‎$p$‎ می باشد که ‎$phi (g)$‎ یا ‎$z(...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم 1391

همه خودریختی های مرکزی، داخلی اند همه خودریختی های مرکزی،عناصر مرکز را ثابت نگه می دارند همه خودریختی های مرکزی، یک گروه پوچتوان که عناصر مرکز را ثابت نگه می دارند

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود 1390

فرض کنید یک گروه باشد. مجموعه تمام خودریختی های را با نشان می دهیم. یک خودریختی را که با هر خودریختی داخلی جا به جا شود، خودریختی مرکزی می گوییم و مجموعه همه خودریختی های مرکزی را با نشان مـی دهیم که زیرگروهی نرمال از می-باشد. اگر و دو زیـرگــروه نـرمال باشـند مجموعه تمام خودریختی هایی که را نقطه به نقطه ثابت نگه می دارند را با نمایش می دهیم. به علاوه مجموعه تمام خـودریختی هـایی که را نقطه به...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1387

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1391

فرض کنیمgیک گروه باشد.خودریختیrازgنرمال نامیده می شود هرگاه به ازای هر زیر گروه نرمالhازgداشته باشیمr(h)=h.در این پایان نامه مطالب ذیل مورد بررسی قرار می گیرد. 1-اگرgیک گروه پوچ توان فراآبلی(ناآبلی)آزاد باشد,آنگاه گروه خودریختی های نرمالgباگروه خودریختی های داخلی تعمیم یافته آن برابر تی باشند. 2-اگرgیک گروه پوچ توان(از ردهc)در آبلی باشد,آنگاه گروه خودریختی های نرمال آن پوچ توان (از رده حداکثر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1391

چکیده را گویا گوییم هرگاه ? : g ?? g یک گروه باشد. درونریختی g فرض کنیم ،x ? g که به ازای هر ?? موجود باشند به طوری h1, ..., hr ? z و a1, ..., ar ? g end? r(g) را با g پذیر ?? های گویای معکوس ?? گروه درونریختی .?(x) = (xa1)h1...(xar )hr است اگر وتنها اگر c ی پوچتوانی ?? توان از رده ?? پوچ g کنیم که ?? دهیم. ثابت می ?? نمایش می باشد. c ? ی 1 ?? توان از رده ?? پوچ end? r(g) g نماییم. اگر ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده علوم پایه دامغان 1392

برای یک گروه g ،فرض کنیدaut(g نشاندهنده گروه خودریختی های g باشدو خودریختی مرکزی g مجموعه ای از همه خودریختی در aut(g باشد که با هر خودریختی در inn(g جابه جا می شود.در این پایان نامه برخی نتایج درباره خودریختی مرکزی بدست می آوریم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1392

فرض کنیم g یک گروه باشد. گروه خودریختی های گروه g و زیرگروه متشکل از نقاط ثابت خودریختی ? از گروه g را به ترتیب با (aut(g و (c_g (? نشان می دهیم. خودریختی ? منظم یا بدون نقطه ثابت (تقریباً منظم) نامیده می شود اگر c_g (?)=1 ((c_g (? متناهی باشد). در این پایان نامه نتایج زیر مورد بررسی قرار می گیرد: 1. ساختار گروههای متناهی که خودریختی منظم از مرتبه عدد اول p دارند، به خصوص زمانی که p برابر 2 یا...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید