نتایج جستجو برای: خمینه شبه متقارن ریچی تعمیم یافته
تعداد نتایج: 163803 فیلتر نتایج به سال:
دردزینسکی و روتر [2] در سال 1977، خمینه های متقارن همدیس را بررسی کردند، همچنین کوان و بک[11] در سال 2004، خمینه های بازگشتی همدیس را مورد مطالعه قرار دادند. یانو و ساواکی [13] در سال 1968، اولین بار کشان خمیدگی شبه همدیس را معرفی کردند که شامل هر دوی کشان خمیدگی همدیس و کشان خمیدگی هم دوری می باشد. w_jkl^m = -(n-2)bc_jkl^m + [a+(n-2)b] c ?_jkl^m در این پایان نامه، ابتدا خمینه های متقارن همدی...
در این پایان نامه به بررسی دسته بندی فضاهای متقارن تعمیم یافته 4-بعدی پرداخته می شود. این دسته بندی شامل چهار نوع a، b، c و d می باشد. با بکار گیری کروشه لی و متر g مربوط به هر چهار نوع به ترتیب ارتباط لویی سویتا، تانسور انحنای(1,3) ، تانسور انحنای (0,4) و تانسور انحنای همدیس وایل را برای هر چهار نوع a، b، c و d با استفاده از روش هایی که ارائه خواهد شد بدست خواهد آمد. در ا...
فرم فضای ساساکین تعمیم یافته نخستین بار در [ 1] معرفی شده است . از آن در [ 2]و نامساوی چن در [ 3] و ساختار زیرمنیفلدهای شیب دار جانشین شده در[ ?]،cr-زیرمنیفلدهادر [ ?] بررسی شده اند.همچنین انحنای ریچی تعدادی از زیرمنیفلدها در[ 8] وهمدیسهای هموار وموضعا متقارن در[ 9] ،وضعیت های متقارن دیگر در[ 7]و غوطه وری حاصل ضرب تابدار در [ 10 ] مطالعه شده اند.
در این پایاننامه ثابت میکنیم یک مانیفلد شبه ریمانی تخت، بازگشتی محض و یا ریچی بازگشتی محض نمیتواند یک مانیفلد ?-پاراساساکی باشد.همچنین برای یک مانیفلد ?-پاراساساکی شرایط متقارن،شبه متقارن و یا داشتن انحنای برشی ثابت همه معادل هستند.
به طور کلی یک متر فینسلر روی یک خمینه، خانواده ای از نرم های مینکفسکی روی کلاف مماس آن خمینه است. این نرم ها لزوما برگشت پذیر نمی باشند، لذا تابع فاصله القا شده از آن متر در نامساوی مثلث صدق می کند ولی لزوما متقارن نیست. وقتی این نرم ها از ضرب های داخلی روی کلاف مماس القا شوند متر فینسلری حاصل یک متر ریمانی خواهد بود. لذا مترهای فینسلر تعمیم مترهای ریمانی می باشد. به طور کلی در این پایان نامه ...
(به دلیل استفاده از نرم افزار فارسی تک فایل word باید با این برنامه باز شود) در این پایان نامه برخی از پیشرفتهای اخیر ریچی سولیتونها مرور میشود. در اغاز ریچی سولیتونها بر خمینه های ریمانی وکیلری تعریف میشود پس از ان با استفاده از قضیه کالابی کیلر - ریچی سولیتونهای قبضی بر خمینه های کیلری فشرده بیان میشود. با مطالعه تابعکهای پرلمن مشاهده میشود که نقاط بحرانی این تابعک ها ریچی سولیتونها هستند. ...
روی خمینه های فرد بعدی یک ساختار تعریف شده است که تعمیم یافته ی چندین ساختار شناخته شده روی خمینه های تقریبا مختلط مانند ساختارهای ساساکی، شبه-ساساکی، ترانس ساساکی، کنموتسو و شبه همتافته است. این ساختار، یک ساختار شبه ساساکی تعمیم یافته یا به طور مختصر ساختار g.q.s نامیده می شود، که روی خمینه های متریک تقریبا سایا تعریف شده و در چندین شرط اضافی نیز صدق می کند. سپس توزیع d_1در نظر گرفته شده...
خمینه های lp- ساساکیین اولین باردر سال توسط [19] معرفی شده است. سپس و [15] نظریه مشابهی را مطرح و نتایج زیادی را بدست آوردند. درادامه افراد دیگری مانند و [26] نیزاین خمینه ها را مورد بررسی قراردادند. دراین پایان نامه ما این خمینه ها را تعریف کرده و سپس کشان های خمیدگی از این خمینه ها را معرفی نموده و به بحث و بررسی هریک از آنها پرداخته و نتایج جالبی را بدست می آوریم. فصل چهارم متشکل از پنج بخ...
در این رساله فضاهای فینسلری متقارن ضعیف و متقارن تعمیم یافته را مورد بررسی قرار می دهیم. برخی از قضایای وجودی و برخی از خواص هندسی این فضاها را بررسی کرده و نشان می دهیم چنی فضاهائی می توانند بصورت یک فضای خارج قسمتی از یک گروه لی با یک متریک فینسلری پایا بیان شوند.
در این پایان نامه نشان خواهیم داد، چنانچه یک ماتریس وزنی تعمیم یافته و یا به اختصار یک bgw با پارامتر های ((q^(m+1)-1)/(q-1),q^m,q^m-q^(m-1) )روی یک گروه ضربی g داشته باشیم، به طوری که q=?(2h-1)?^2 توانی از یک عدد اول و m یک عدد صحیح مثبت باشد، همچنین با فرض h=±3^n، و وجود یک ماتریس آدامار منظم با حاصل جمع سطریh2، و طرح های بلوکی متقارن با پارامتر های (?4h?^2,?2h?^2-h,h^2-h)، طرح هایی متقارن با...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید