نتایج جستجو برای: خمینه دولد
تعداد نتایج: 294 فیلتر نتایج به سال:
در سالهای نخست قرن بیستم، هانری پوانکاره پس از آن که همزمان با چند ریاضیدان دیگر موفق شد قضیه یکنواخت سازی را ثابت کند و طبقه بندی رویه ها را نتیجه بگیرد، اولین تلاشها برای طبقه بندی خمینه های سه بعدی را آغاز نمود و این حدس را مطرح کرد که هر خمینه سه بعدی بسته (فشرده و بی لبه) که همبند ساده باشد، با کره سه بعدی همسانریخت است. در این مقاله روند تاریخی تلاش ها برای اثبات حدس پوانکاره را مرور می ...
در سالهای نخست قرن بیستم، هانری پوانکاره پس از آن که همزمان با چند ریاضیدان دیگر موفق شد قضیه یکنواخت سازی را ثابت کند و طبقه بندی رویه ها را نتیجه بگیرد، اولین تلاشها برای طبقه بندی خمینه های سه بعدی را آغاز نمود و این حدس را مطرح کرد که هر خمینه سه بعدی بسته (فشرده و بی لبه) که همبند ساده باشد، با کره سه بعدی همسانریخت است. در این مقاله روند تاریخی تلاش ها برای اثبات حدس پوانکاره را مرور می ک...
رده بندی رویه های بسته، نقطه عطفی در توسعه توپولوژی است چنان که اکنون این مطلب برای بیشتر دانشجویان دوره کارشناسی به عنوان مقدمه ای بر توپولوژی تدریس می شود. رده بندی خمینه های با بعد بیشتر، خیلی مشکل تر است. در حقیقت به علت پیچیدگی گروه بنیادی، رده بندی کاملی مانند آنچه درباره رویه ها وجود دارد، در بعدهای بزرگتر از 3 ممکن نیست. در این مقاله کار قابل توجه گریشا پرلمان را که ممکن است مساله رده ب...
در این مقاله، پس ارائه تاریخچه ای از عمل های با نقص همگنی یک، نتایج پژوهش های انجام شده در زمینه رده بندی عمل های با نقص همگنی یک بر خمینه های ریمانی و شبه ریمانی با تقریب هم ارزی مداری آورده شده است. همچنین مسئله های باز پژوهشی موجود در این زمینه معرفی شده اند.
رده بندی رویه های بسته، نقطه عطفی در توسعه توپولوژی است چنان که اکنون این مطلب برای بیشتر دانشجویان دوره کارشناسی به عنوان مقدمه ای بر توپولوژی تدریس می شود. رده بندی خمینه های با بعد بیشتر، خیلی مشکل تر است. در حقیقت به علت پیچیدگی گروه بنیادی، رده بندی کاملی مانند آنچه درباره رویه ها وجود دارد، در بعدهای بزرگتر از 3 ممکن نیست. در این مقاله کار قابل توجه گریشا پرلمان را که ممکن است مساله رده ب...
چکیده: در این پایان نامه هدف مطالعه خمینه های کنموتسو با شرایط زیرمی باشد: r.r=lr q (g, r) , r.r=l q(s, r) , r.w=lw q (g, w) نشان می دهیم که هر خمینه نیم متقارن ، نیم متقارن ریچی ؛ هر خمینه شبه متقارن ، شبه متقارن ریچی ؛ هر خمینه نیم متقارن ریچی ، شبه متقارن ریچی؛همچنین هر خمینه نیم متقارن وایل ، شبه متقارن وایل است . ولی عکس این احکام درست نیستند . همچنین نتایج جالبی به صورت زیر به دست ...
این مقاله دو قسمتی که قسمت دوم آن در شماره اینده به چاپ خواهد رسید، کوششی است برای بیان بخشی از تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ- ویتن روی خمینه های سه و چهار بعدی.
موضوع اصلی این پایان نامه بررسی مانیفلدهای سه بعدی پارا ساساکی نوع (?) است. در این پایان نامه مانیفلدهای تقریباً پاراسایا و (?)-تقریباً پارا سایا متریک را تعریف می کنیم و با اضافه کردن یک شرط، ساختار (?)-پارا ساساکی روی آن تعریف می کنیم و در یک قضیه خاصیت های تانسور انحنا و تانسور ریچی را برای آن بیان و اثبات می کنیم. مانیفلدهای سه بعدی (?)-پارا ساساکی شبه متقارن ریچی را معرفی می کنیم و ثابت می ...
این مقاله دو قسمتی که قسمت دوم آن در شماره اینده به چاپ خواهد رسید، کوششی است برای بیان بخشی از تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ- ویتن روی خمینه های سه و چهار بعدی.
در این پایاننامه ثابت میکنیم یک مانیفلد شبه ریمانی تخت، بازگشتی محض و یا ریچی بازگشتی محض نمیتواند یک مانیفلد ?-پاراساساکی باشد.همچنین برای یک مانیفلد ?-پاراساساکی شرایط متقارن،شبه متقارن و یا داشتن انحنای برشی ثابت همه معادل هستند.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید