نتایج جستجو برای: جبر فون نویمن
تعداد نتایج: 3823 فیلتر نتایج به سال:
نشان می دهیم که هر عملگر کراندار طیفی پوشا و یکانی از یک جبر فون نویمان نامتناهی سره به روی جبر باناخ نیم ساده یک همومورفیسم جردن است.
یکی از مسائل اصلی نظریه اشتقاق ها، اثبات پیوستگی خود به خود اشتقاق ها و درونی بودن اشتقاق های پیوسته است. در این ارتباط بررسی وجود اشتقاق های غیرپیوسته و غیر داخلی روی جبرهای توپولوژیک مختلف از اهمیت ویژه ای برخوردار است. با تلفیق دو ایده ی مطرح شده در بالا، یک مسئله اساسی، مطالعه ی جبرهایی است که فقط اشتقاق های داخلی دارند. ما در نظر داریم که یک شرح کاملی از اشتقاق ها روی جبر (s(m متشکل از همه...
برای جبر باناخ a دارای همانی تقریبی کراندار همریختیهای مدولی روی زیر فضاهای درونگرای دوگان a را مورد مطالعه قرار می دهیم.
در نظریه اندازه کلاسیک هر اندازه مانند m روی سیگما جبر m به یک تابعک مثبت روی m توسیع می یابد. این تابعک انتگرال لبگ نظیر m می باشد. قضیه گلیسون که یکی از اساسی ترین و عمیق ترین قضایا در نظریه اندازه ناجابجایی است به برقراری نظیر این مساله در اندازه ناجابجایی می پردازد. هدف این رساله بررسی قضیه گلیسون و بیان چند کاربرد این قضیه در فیزیک کوانتومی است.
در دهه اخیر اشتقاق های موضعی روی جبر های عملگری به صورت گسترده ای مورد بحث قرار گرفته اند در ابتدا مفهوم اشتقاق های موضعی توسط لارسون و سرور و کادیسون به طور مستقل معرفی شدند. کادیسون و برشار اشتقاق های موضعی نرم پیوسته روی جبر های فون نیومن را مورد بحث قرار دادند. به وضوح مفهوم اشتقاق تعمیم یافته تعمیمی از مغهوم اشتقاق اشت اگر بتوانیم روابط داخلی این مفاهیم را روی جبر های عملگری مختلف روشن کنی...
فرض کنید a و b دو جبر باناخ باشند. نگاشت ? از a بروی b را طیف- نگهدار گویند هرگاه، برای هر a از جبر a داشته باشیم؛ (a) ? = (?(a)) ?. به این سوال باز که از تحقیقات کاپلانسکی نشأت می گیرد و توسط آپتیت به این فرم در آمده است توجه کنید. آیا یک نگاشت خطی دوسویی طیف- نگهدار بین جبرهای باناخ نیم ساده یک دار لزوماً یک همریختی جردن است؟ حتی در مورد c* _ جبرها جواب ناشناخته است. در صورتی که می دانیم، در ...
در این پایان نامه ابتدا به بیان برخی مفاهیم و قضیه های اولیه می پردازیم که تعریف –c* جبرها و فون نیومن جبرها و بیان قضیه ی گلفند – نیمارک از آن جمله اند. هدف این پایان نامه بررسی مسئله ی حداقل کردن مقدار ||a-x|| برای عنصر ثابت دلخواه a از –c* جبر a و متغیر x ( روی مجموعه ی n ) است. مسئله ی حداقل مقدار ||a-x|| را در حالتهای مختلفی که مجموعه ی n از عناصر مثبت، طولپا، یکانی، طولپای جزئی و جابجاگ...
در ایــن رســاله، مفهـوم میـانگین پذیـری داخلــی تـوپـولوژیـک گروه هـای کوانتـومی فشـرده ی موضعی را معرفی و مورد مطالعه قرار می دهیم. ابتدا میانگین پذیری داخلی توپولوژیک رده های مهمی از گروه های کوانتومی از قبیل فشرده، گسسته، میانگین پذیر و هم-میانگین پذیر را بررسی می کنیم. در ادامه، ضمن معرفی میانگین پذیری داخلی توپولوژیک مشخصه ای g، نشان می دهیم میانگین پذیری داخلی توپولوژیک مشخصه ای با میانگ...
در این پایان نامه نتایجی در مورد اشتقاق و تعمیم های آن روی c*- مدول های هیلبرت و فضاهای عملگری وابسته به آن داده می شود. سه مشخص سازی برای ابر اشتقاق ها برحسب عناصری که حاصلضربشان نقطه جداکننده یا فشرده یا صفر است, داده می شود. مشخص سازی دیگری برای ابر اشتقاق ها به کمک عناصر تصویر یک جبر فون نیومن نیز ارایه می شود. یک مشخص سازی از ابر اشتقاق های سه تایی روی جبرهای سه تایی ارایه شده و...
در این پایان نامه پس از بیان مفاهیم اولیه در مورد طیف ها وارتباط آن با وارون پذیری, نشان خواهیم داد که اگر x و y فضاهای باناخ باشند, آن گاه هر نگاشت خطی پایای پوشای طیف از (b(x به (b(y به یکی از دو شکل (u(t)=ata^(-1 یا (u(t)=bt*b^(-1 است که a یکریغتی میان x و y و b یکریختی میان *x و y است.هم چنین نشان خواهیم داد هر نگاشت پایای طیف از یک جبر فون نیومن به یک جبر باناخ مختلط نیم ساده یک مهریختی جر...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید