نتایج جستجو برای: جبر فازی

تعداد نتایج: 16114  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی (نوشیروانی) بابل - دانشکده علوم پایه 1392

در این رساله به مطالعه ساختار فیلترهای فازی در bl-جبرها می پردازیم.به همین منظور مفهوم bl-جبرها ?ایده آل ها ?فیلتر استلزامی و مفهوم مجموعه های فازی دوقطبی در ساختار فیلترها از bl-جبرها به کار گرفته می شود و با استفاده از آن یک مفهوم تعمیم یافته از فیلترهای ضدفازی در bl -جبرها معرفی میگردد و خواص آن ها مورد بررسی قرار می گیرد

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه خلیج فارس - دانشکده علوم پایه 1392

نظریه اندازه کلاسیک بر مفهوم ‎$sigma$-‎جبری از زیرمجموعه های یک مجموعه بنا شده است. بنیان این اندازه بر خاصیت جمعی شمارش پذیر بودن استوار است. در این پایان نامه مفاهیم مربوط به مجموعه های کلاسیک مانند ‎$sigma$-‎جبر و اندازه را به مجموعه های فازی توسیع می دهیم. در انتقال این مفاهیم از نظریه مجموعه های کلاسیک به مجموعه های فازی باید تعاریف را به نحو مناسبی تعمیم دهیم که در حالت تحدید به مجموعه ها...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1380

در فصل اول و دوم به معرفی جبرهای ‏‎bck‎‏ پرداخته و با ارائه مثالهایی با جبرهای ‏‎bck‎‏ جابجایی و کراندار و ایجابی و ... آشنا می شویم. سپس ایده آلهای یک جبر را معرفی کرده و بیان قضایایی روابط بین ایده آلهای ایجابی و ماکزیمال و می نیمال و ساده و اول و ... را بررسی می کنیم. در فصل سوم پوچساز ها را معرفی کرده و به بررسی خواص پوچساز ایده آلها می پردازیم. در فصل پنجم ، ایده آلهای دوگان را معرفی کرده ...

پایان نامه :دانشگاه آزاد اسلامی 1377

هدف از قضیه بیز (bayes theorm) در فرم فازی است . بدین جهت ابتدا به بیان مطالبی در رابطه با منطق دو ارزشی می پردازیم سپس منطق دو ارزش را جبری نموده و با بسط مطلب ، روی منطق های چند ارزشی، جبرهای چند ارزشی (در فصل 2 بطور کامل به جبرهای چند ارزشی پرداخته شده است ) را مطرح می کنیم. آنگاه بحث را روی مجموعه هایی با کرانهای نادقیق (مجموعه فازی) تعمیم می دهیم. در این تعمیم از -t نرمها بعنوان رابط استفا...

ژورنال: :مجله ادیان و عرفان 2011
رامین محرمی

دیدگاه کلامی مولوی با دیدگاه عرفانی او در باب جبر تفاوت دارد. او از منتقدان جبر کلامی، و از مدافعان جبر عرفانی است. مولوی دیدگاه اهل جبر نکوهیده را، به دلیل نتایج نامطلوب دنیوی و اخروی آن، نمی پذیرد ولی جبر در مفهوم عرفانی رضا و معیّت با حق و توحید افعالی را قبول دارد. نفس پرستی، دنیاگرایی و حقیقت ستیزی را از دلایل نقد و ردّ جبر نکوهش شده ی اهل جبر، و خداگرایی، حقیقت طلبی و نفس ستیزی را از دلایل ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1372

این پایان نامه در زمینه جبرفازی است و از چهارفصل تشکیل شده است درفصل اول ضمن ارائه تعریف زیر مجموعه های فازی و چند قضیه مقدماتی زیر گروههای نرمال و همدسته های فازی را تعریف کرده و به بررسی خواص آنها می پردازد سپس زیرمجموعه های تراز زیر گروههای فازی را تعریف می کنیم در فصل دوم ابتداء قضیه کیلی را برای زیرگروههای فازی بیان می کنیم و بعد مرتبه زیرگروه فازی از یک گروه متناهی، زیرگروه فازی ابلی و زی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده علوم پایه 1393

دراین پایان نامه ابتدا به معرفی مجموعه های فازی ومجموعه های نرم وتعاریف مقدماتیbci -جبر می پردازیم. با استفاده از این مفاهیم مجموعه های نرم جمعی و اشتراکی روی یک bci-جبر را بررسی می کنیم. دراین راستا مطالعه ایده آل های مختلف از جمله ایده آل های نرم جمعی، اشتراکی و استلزامی روی یک bci-جبر پی گیری می شود. سپس مفهوم ایده آلی شدن مجموعه های نرم بررسی شده و در پایان، مفهوم ایده آل نرم دو قاب (dfs-ای...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده علوم پایه 1391

در این پایان نامه bch-جبر و زیرجبرهای مهم آن از جمله bci/bck-جبر و بخش میانی را معرفی کردهو ارتباط آنها با بخش مثبت بررسی میشود همچنین تجزیه bch-جبرها به کمک بخش میانی مورد بررسی قرار می گیرد در ادامه به معرفی رابطه همنهشتی روی bch-جبر پرداخته شده و شرایط ساخت bch-جبر خازج قسمتی مورد مطالعه قرار میگیرد. در پایان با معرفی زیر مجموعه های فازی n-ساختار معرفی شده و به مطالعه n-ساختارهای روی bch-جبر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - پژوهشکده ریاضیات 1393

در این پایان نامه, ابتدا به معرفی و بررسی ماتریس های فازی تعمیم یافته که بر نوع خاصی از نیم حلقه ها به نام جبر راهی تعریف شده اند, می پردازیم. در ادامه برخی از ویژگی های اولیه ی ماتریس های فازی تعمیم یافته ترایا را ثابت می کنیم. همچنین توان های ماتریس های فازی تعمیم یافته ترایا را مورد بحث قرار می دهیم. سپس بستار ترایا از یک ماتریس فازی تعمیم یافته را تعریف می کنیم و برخی ویژگی های آن را بیان م...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر 1390

در این پایان نامه، هدف ما مطالعه انواع فیلترهای فازی، در شبه –bl جبرهاست. بدین منظور ابتدا به معرفی مشبکه، مشبکه مانده، -bl جبرها و فیلترهای آن ها پرداخته ایم. در ادامه چند نوع از فیلترهای فازی، همچون فیلتر بولی فازی، فیلتر نرمال فازی، فیلتر اول فازی، فیلتر بیشین فازی، فیلتر سرسخت فازی معرفی و روابط بین فیلترهای فازی را بررسی می کنیم. در پایان قضیه فیلتر اول فازی را مطالعه خواهیم کرد و ثابت می ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->