نتایج جستجو برای: تابعک اکسپوزد قوی
تعداد نتایج: 13125 فیلتر نتایج به سال:
در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...
در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...
در این رساله، پس از پرداختن به معرفی انتگرال ریمان و انتگرال استیلتیس که اساس کار در این رساله را تشکیل می دهند، نامساوی ها برای نوعی تابعک gruss در جملات انتگرال های استیلتیس با انتگران های محدب و کاربردهای تابعک cebysev بیان می شود. این رساله شامل 3 فصل بوده و هدف نگارنده از آن، به اثبات رساندن نامساوی های جدید برای تابعک ( 0 ; 0 )d به فرض این که انتگرال استیلتیس روی [a,b] محدب باشد در آخر ک...
در این پایان نامه با نگاهی متفاوت به بحث تقریب توابع پرداخته ایم و ساختار کلی بسط توابع که برگرفته از درونیابی ها هستند را مورد بررسی قرار داده ایم. سپس به معرفی یک بسط تابعی که حالت کلی تری از تمام بسط های شناخته شده است می پردازیم و با استفاده از این بسط تابعی روشی برای حل معادلات تابعی و تقریب کسری پد تابع رادیکال x ارائه می دهیم.
: در این پایان نامه با مینیمم سازی تابعک ها روی کره هایی در فضای سوبولفw_0^1,2 سروکار داریم و نتایج اصلی بدست آمده را برای اثبات قضیه ی چندگانگی جواب در مورد مساله ی مقدارمرزی زیر به کار می بریم. {?(-?u(x)=h(x)?|u(x)|?^(s-2) u(x) +?g(x,u(x)) x??@u(x)=0 x???)? در اینجا ?(u)=?.(?u) عملگر لاپلاس ? دامنه ای کران دار در r^n ، ? پارامتر حقیقی,(2و1) ,s? h?c(? ?) تابعی است که می تواند ت...
قضیه گلیسون - کاهان - زلازکو(gkz )بیان می کند که هر گاه m یک زیرفضای با هم بعد 1 از یک جبر باناخ مختلط یکدار جابجایی ..... بوده و هر عضو m دارای صفری در فضای ایده آل ماکسیمال .... باشد(به عبارت دیگر هر عنصر m در یک ایدآل ماکسیمال قرار می گیرد)آنگاه m دارای صفر مشترکی در فضای ایده آل ماکسیمال ..... خواهد بود (mخود یک ایده آل ماکسیمال خواهد بود). این قضیه به زیر فضاهای با هم بعد بالاتر نیز تعمیم ...
در حل بسیاری از مسائلی که توسط معادلات دیفرانسیل بیان می شوند، از روش های عددی مانند تفاضلات متناهی و المان های محدود استفاده می شود. این روش ها در حل برخی از مسایل با محدودیت هایی همراه می باشند.لذا در سال های اخیر روش های عددی جدیدی بنام روش های بدون شبکه معرفی شده اند که در آنها برای حل مسئله نیازی به شبکه بندی دامنه نیست. در این پایان نامه معادله ی گرما و معادله ی کلاین-گوردون، با استفاده ...
در این پایان نامه پس از بیان مفاهیم اولیه در مورد طیف ها وارتباط آن با وارون پذیری, نشان خواهیم داد که اگر x و y فضاهای باناخ باشند, آن گاه هر نگاشت خطی پایای پوشای طیف از (b(x به (b(y به یکی از دو شکل (u(t)=ata^(-1 یا (u(t)=bt*b^(-1 است که a یکریغتی میان x و y و b یکریختی میان *x و y است.هم چنین نشان خواهیم داد هر نگاشت پایای طیف از یک جبر فون نیومن به یک جبر باناخ مختلط نیم ساده یک مهریختی جر...
قضیه گلیسون-کاهانه-زلازکو بیان می دارد که چه وقتی تابعک خطی مفروض ضربی می باشد. تابعک را درجبر باناخ تقریبا ضربی می گویند هرگاه، برای ای داشته باشیم، . اگر تابعک تقریبا ضربی در جبر باناخ نزدیک به یک تابعک خطی ضربی باشد می گوییم جبر باناخ یک جبر می باشد. ادوارد جانسون ثابت کرده است که بسیاری از جبر های باناخ دارای این خاصیت می باشند. در این پایان نامه ثابت می کنیم که جبر باناخ سریهای توان...
در این پایان نامه تابعک های نمائی نیم پیوسته ی مختلط بررسی شده اند. اگر g:x?c یک تابعک نمائی متعامد و نیم پیوسته باشد. نشان می دهیم که یکی از شرایط زیر برقرار است: (الف) تابعک های خطی منحصر به فرد a_1,a_2:x?r وجود دارند که g(x)=exp??(a_1 (x)+ia_2 (x)),? (x?x); (ب) رابطه ی ? - هم ارز ضرب داخلی در x ، c?c و تابعک های خطی منحصر به فرد a_1,a_2:x?r وجود دارند به طوری که g(x)=exp??(a_1 ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید