نتایج جستجو برای: احاطه گرمکانی
تعداد نتایج: 1160 فیلتر نتایج به سال:
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
در این پایان نامه به بررسی نامساوی های نوردهاوس-گادووم بر روی دو تعریف اساسی احاطه کنندگی و احاطه کنندگی کلی پرداخته شده است. در گراف g یک زیرمجموعه از مجموعه رأس های گراف g را یک مجموعه احاطه کننده می گوییم، هرگاه هر رأس v ?v(g)-s با حداقل یکی از رئوس s مجاور باشد، و مجموعه ی s?v(g) را مجموعه احاطه کننده کلی می گوییم، هرگاه هر رأس v ?v(g) با حداقل یکی از رئوس s مجاور باشد.
در این پایانامه کرانهای بالا و پایین برای عدد k-احاطه ای ارایه میکنیم.
در این پایان نامه احاطه گرهای سراسری و مستقل را معرفی کرده و سپس با استفاده از تحقیق در عملیات ، مساله برنامه ریزی خطی آن را بیان کرده ایم سپس چندجمله ای مربوط به هر یک را بدست آورده ایم و در نهایت ضرایب جندجمله ای را برای هر یک از آنها بدست آورده ایم.
احاطه کننده یکی از مفاهیم بنیادین در نظریه گراف است که دارای کاربردهای مختلف در شبکه های تک کاره و بی سیم، شبکه های بیولوژیکی، محاسبات توزیع شده، شبکه های اجتماعی و گراف های وب می باشد. مجموعه های احاطه کننده همچنین به عنوان مدل هایی برای تسهیلات مساله های موقعیت (تعیین محل) در پژوهش عملیاتی استفاده می شوند. از جمله کاربردهایی که برای این مفهوم می توان نام برد، استفاده از آن در شبکه های ارتباطی...
چندجمله ای احاطه گر گراف g از مرتبه n به صورت d(g,x)=?_(i=?(g))^n??d(g,i)? تعریف می شود که d(g,i) تعداد مجموعه های احاطه گر گراف g از اندازه i بوده و ?(g) عدد احاطه ای g است. ریشه d(g,x) را ریشه احاطه ای نامیده و با z(d(g,x)) نشان می دهند. در این پایان نامه خواص اساسی چند جمله ای بعضی گراف ها را مطالعه و چند جمله ای احاطه گر دورها و مسیرها را تعیین می کنیم.
ماتریس حقیقی a را تصادفی دوگانه ی زوج گوییم، هرگاه ترکیب محدبی از ماتریس های جایگشت زوج باشد. برای ماتریس های a,b، گوییم a توسط b احاطه سازی زوج می شود، هرگاه ماتریس تصادفی دوگانه زوج d موجود باشد به طوری که a=db. همچنین ماتریس تصادفی دوگانه دوار b ترکیب محدبی از ماتریس های جایگشت دوار می باشد. برای بردارهای x,y، گوییم x توسط y احاطه سازی دوار می شود، هرگاه ماتریس تصادفی دوگانه دوار d موجود باش...
این پایان نامه، مشتمل بر 3 فصل است. در فصل اول تعاریف مقدماتی و قضایای پایه ای را بیان می کنیم. سپس در فصل دوم عدد احاطه ای ضعیفاً همبند و در فصل سوم عدد زیرتقسیم احاطه ای ضعیفاً همبند را بررسی نموده و کران هایی برای آن ها ارائه می کنیم. همچنین مقدار دقیق این پارامتر ها را برای برخی از گراف ها بدست می آوریم. فرض کنید g یک گراف با مجموعه رأس های (v(g و مجموعه یال های (e(g باشد. زیر مجموعه s از رأ...
مجموعهs از رئوس گراف gرا یک مجوعه احاطه گر تام نامند هرگاه هر رأس درv(g) با حداقل یک رأس از s مجاور باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر تام را عدد احاطه ای نامیده و با?_(t ) (g) نشان می دهند. مجموعه s را یک مجموعه احاطه گر همبند مضاعف در g نامند هرگاه هر رأس درv(g)-s با حداقل یک رأس از s مجاور بوده و زیرگرافهای القایی g[s] و g[v-s] همبند باشند. مینیمم اندازه یک مجموعه احاطه گر همبند مضا...
در این پایان نامه به بررسی مفهوم عدد احاطه گری علامت دار در گراف ها می پردازیم. اگر به هر راس گراف وزن ? یا ?- اختصاص می دهیم به طوری که هر راس v از گراف? مجموع وزن همسایه هایش و وزن خود راس v بزرگتر یا مساوی ? باشد. عدد احاطه گری علامت دار? ?_(s(g))?کمترین مقدار مجموع وزن راس های گراف است به طوری که برای هر راس شرایط احاطه گری علامت داربرقرار باشد. برای عدد احاطه گری علامت دار? کران هایی به ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید