نتایج جستجو برای: آرنز منظم

تعداد نتایج: 6990  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده علوم پایه 1388

هدف از پژوهشی که پیش روست آشایی با تعاریف و ویژگی های اساسی دوگان و دوگان دوم یک جبرر باناخ آرنز منظمی توابع تقریباً به طور ضعیف دوره ای و یافتن روابط مفید و کاربدی میان مفاهیم فوق می باشد. نشان خواهیم داد g یک گروه فشرده موضعی ناگسسته یا دارای یک زیر گروه میانگین پذیرنامتناهی باشد آن گاه دوگان دوم جبر گروهی g دارای برگشتی است که توسیع برگشت نمی باشد. لذا برای رده های بالا از گروه ها به پرسش د...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر 1387

در این پایان نامه، ابتدا به بررسی منظم آرنز بودن عمل های مدولی یک a- مدول باناخ چپ یا راست می پردازیم. همچنین شرایط لازم برای منظم آرنز بودن یک جبر باناخ توسط تجزیه *a با **a را بیان می کنیم. در پایان به معرفی جبرهای باناخ مثلثی پرداخته و با استفاده از این جبرها به برخی از سولات مطرح شده در مقاله لایو و اولگر در مرجع (16) پاسخ اصلی.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر 1384

در این پایان نامه مفهوم فضاهای باناخ ماتریسی و جبر های باناخ ماتریسی معرفی شده است. با استفاده از ساختار جبرهای باناخ ماتریسی، ماتریس های تقریب پذیر ایجاد شده و آرنز منظم بودن و میانگین پذیر ضعیف این جبرها مورد بررسی قرار می گیرد. به ویژه ثابت می شود، میاله منظم پذیری آرنز و میانگین پذیری ضعیف برخی از جبرهای ماتریسی را می توان به جبر های باناخ ساده تر تقلیل داد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان 1388

فرض کنید a یک جبر باناخ باشد.دوگان دوم a با ضرب آرنز به یک جبر باناخ تبدیل می شود. در این پایان نامه خواص مقدماتی دوگان دوم a را بررسی می کنیم.بویژه برخی قضایا درباره ی ایدال های ماکسیمال منظم و رادیکال دوگان دوم a را بیان و اثبات می کنیم.چنانچه g گروه موضعا فشرده باشد دوگان دوم جبرگروهی l1(g) را با ضرب آرنز مجهز می کنیم. بسیاری از خواص اساسی آنرا بررسی می کنیم. بویژه نشان داده می شود رادیکال l...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید بهشتی 1389

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز 1389

فرض کنیم a یک جبر باناخ باشد و a**دوگان دوم آن باشد. در این مقاله رابطه بین میانگین پذیری a** ونظم پذیری آرنز a را بررسی می کنیم.نشان می دهیم که اگر? ضرب اول آرنز و z1 مرکز توپولوژیکی (a**, ?) باشد آن گاه از شرط ? z1 a? a** نتیجه می شود که a منظم آرنز است. هم چنین نشان می دهیم که اگر aجبر باناخ دوگان و a** میانگین پذیر ضعیف باشد آن گاه a میانگین پذیر ضعیف است. بلاخره شرایطی را بررسی می کنیم که ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم پایه 1389

در این پایان نامه ملاک ساده ای برای منظم آرنز بودن نگاشت های دو خطی در فضاهای نرم دار که بویژه در عمل مدول های باناخ به کار می روند را ارائه می دهیم و سپس شرایطی را که تحت آن ها خود الحاق دوم از یک مشتق به دوگان مدول باناخ باز هم یک مشتق باشد را بررسی خواهیم کرد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1393

در این پایان نامه به معرفی دو خاصیت bsp و absp میپردازیم و نشان می دهیم جبرهایی مانندl1(g) ,c0(g) دارای خاصیت bsp می باشند. همچنین نشان می دهیم هر همریختی فشرده از یک جبر باناخ منظم قوی که دارای خاصیت bsp باشد به یک جبر باناخ دیگر دارای بردی با بعد متناهی می باشد. در نهایت نشان می دهیم هر جبر باناخ منظم آرنز ، wsc که یک همانی تقریبی کراندار داشته باشد یکدار است. به عنوان اصلی ترین قضایای ای...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1388

در این رساله مفهوم آرنز منظم بودن یک جبر باناخ a را به حالتی که یک ساختار مدولی روی آن وجود دارد توسعه می دهیم. سپس نشان می دهیم که وقتی s یک نیمگروه وارون با زیرگروه عناصر خودتوان تماما مرتب e باشد آنگاه (l^{1}(s آرنز منظم مدولی است اگر و تنها اگر ~~/s متناهی باشد که ~~ یک رابطه هم ارزی مناسب روی s می باشد. در حالتی که s یک گروه گسسته باشد این به قضیه یانگ در مورد آرنز منظم بودن جبرهای گروهی ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393

a و b را u ? مدولهای باناخ و m را یک a ? u ? مدول باناخ چپ و یک b ? u ? مدول باناخ راست در نظر بگیرید. در این پایان نامه، میانگینپذیری مدولی، n ?میانگینپذیری مدولی ضعیف و آرنز منظمی } =: t ? مدول ) ??? ? ? ??? = t ( به عنوان یک {u ? ? | ??? a m b ??? مدولی از جبر باناخ مثلثی را بررسی میکنیم. این نتایج را به کار میبریم که ثابت کنیم برای نیمگروه معکوس s با زیرنیمگروه e ? t 0 = ???...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید