نتایج جستجو برای: ω narrow topological generalized group
تعداد نتایج: 1270648 فیلتر نتایج به سال:
In this paper we study hereditarily homogeneous generalized topological spaces. Various properties of hereditarily homogeneous generalized topological spaces are discussed. We prove that a generalized topological space is hereditarily homogeneous if and only if every transposition of $X$ is a $mu$-homeomorphism on $X$.
a. csaszar introduced and extensively studied the notion of generalized opensets. following csazar, we introduce a new notion hyperconnected. we study some specicproperties about connected and hyperconnected in generalized topological spaces. finally, wecharacterize the connected component in generalized topological spaces.
this thesis basically deals with the well-known notion of the bear-invariant of groups, which is the generalization of the schur multiplier of groups. in chapter two, section 2.1, we present an explicit formula for the bear-invariant of a direct product of cyclic groups with respect to nc, c>1. also in section 2.2, we caculate the baer-invatiant of a nilpotent product of cyclic groups wuth resp...
We present an example of a separable metrizable topological group G having the property that no remainder of it is (topologically) homogeneous. 1. Introduction. All topological spaces under discussion are Tychonoff. A space X is homogeneous if for any two points x, y ∈ X there is a homeomorphism h from X onto itself such that h(x) = y. If bX is a com-pactification of a space X, then bX \ X is c...
In this paper, we introduce the concept of the generalized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topological spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and defi...
in this paper, we have dened and studied a generalized form of topological vectorspaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of levine. along with other results, it is provedthat every s-topological vector space is generalized homogeneous space. every open subspaceof an s-topological vector space is ...
In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...
A. Csaszar introduced and extensively studied the notion of generalized open sets. Following Csazar, we introduce a new notion hyperconnected. We study some specic properties about connected and hyperconnected in generalized topological spaces. Finally, we characterize the connected component in generalized topological spaces.
Suppose M is a countable first-order structure with a ‘rich’ automorphism group Aut(M). We will study Aut(M) both as a group and as a topological group, where the topology is that of pointwise convergence. This involves a mixture of model theory, group theory, combinatorics, descriptive set theory and topological dynamics. Here, ‘rich’ is undefined and depends on the context, but examples which...
in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید