let $omega_x$ be a bounded, circular and strictly convex domain of a banach space $x$ and $mathcal{h}(omega_x)$ denote the space of all holomorphic functions defined on $omega_x$. the growth space $mathcal{a}^omega(omega_x)$ is the space of all $finmathcal{h}(omega_x)$ for which $$|f(x)|leqslant c omega(r_{omega_x}(x)),quad xin omega_x,$$ for some constant $c>0$, whenever $r_{omega_x}$ is the m...