نتایج جستجو برای: two dimensional legendre polynomials
تعداد نتایج: 2696750 فیلتر نتایج به سال:
It is well known that any elliptic integral can be transformed into a linear combination of elementary functions and Legendre’s three Elliptic functions. Methods for transforming these integrals to the Legendre form are described in numerous papers and textbooks. However, when it comes to actually designing and implementing such a reduction algorithm the existing methods require significant mod...
In this paper, a new set of orthogonal moments based on the discrete classical Krawtchouk polynomials is introduced. The Krawtchouk polynomials are scaled to ensure numerical stability, thus creating a set of weighted Krawtchouk polynomials. The set of proposed Krawtchouk moments is then derived from the weighted Krawtchouk polynomials. The orthogonality of the proposed moments ensures minimal ...
This paper addresses bivariate orthogonal polynomials, which are a tensor product of two different orthogonal polynomials in one variable. These bivariate orthogonal polynomials are used to define several new types of continuous and discrete orthogonal moments. Some elementary properties of the proposed continuous Chebyshev–Gegenbauer moments (CGM), Gegenbauer–Legendre moments (GLM), and Chebys...
Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances ...
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید