نتایج جستجو برای: transcendental eigenvalue problem
تعداد نتایج: 894354 فیلتر نتایج به سال:
In this paper, a rigorous convergence and error analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem is presented. The formulation of the eigenvalue problem in terms of a boundary integral equation yields a nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue problem and its Galerkin approximation are analyzed in the framewo...
Large scale eigenvalue computation is about approximating certain invariant subspaces associated with the interested part of the spectrum, and the interested eigenvalues are then extracted from projecting the problem by approximate invariant subspaces into a much smaller eigenvalue problem. In the case of the linear response eigenvalue problem (aka the random phase eigenvalue problem), it is th...
We introduce the quadratic two-parameter eigenvalue problem and linearize it as a singular two-parameter eigenvalue problem. This, together with an example from model updating, shows the need for numerical methods for singular two-parameter eigenvalue problems and for a better understanding of such problems. There are various numerical methods for two-parameter eigenvalue problems, but only few...
Consider the linear general eigenvalue problem Ay = λBy , where A and B are both invertible and Hermitian N × N matrices. In this paper we construct a set of meromorphic functions, the Krein eigenvalues, whose zeros correspond to the real eigenvalues of the general eigenvalue problem. The Krein eigenvalues are generated by the Krein matrix, which is constructed through projections on the positi...
Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomp...
Finding approximations to the eigenvalues of nonlinear eigenvalue problems is a common problem which arises from many complex applications. In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear eigenvalue problems are verified. These algorithms use an efficient numerical approach for calculating the first and second derivatives of the determinant of the ...
We present an iterative method to compute the Maxwell’s transmission eigenvalue problem which has importance in non-destructive testing of anisotropic materials. The transmission eigenvalue problem is first written as a quad-curl eigenvalue problem. Then we show that the real transmission eigenvalues are the roots of a non-linear function whose value is the generalized eigenvalue of a related s...
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید