Fix an integer n = 3. We show that the alternating group An appears as Galois group over any Hilbertian field of characteristic different from 2. In characteristic 2, we prove the same when n is odd. We show that any quadratic extension of Hilbertian fields of characteristic different from 2 can be embedded in an Sn–extension (i.e. a Galois extension with the symmetric group Sn as Galois group)...