نتایج جستجو برای: svm classifier

تعداد نتایج: 59967  

2007
H. Selvaraj S. Thamarai Selvi D. Selvathi L. Gewali Matthew C. Clarke

This research paper proposes an intelligent classification technique to identify normal and abnormal slices of brain MRI data. The manual interpretation of tumor slices based on visual examination by radiologist/physician may lead to missing diagnosis when a large number of MRIs are analyzed. To avoid the human error, an automated intelligent classification system is proposed which caters the n...

2002
Zehang Sun George Bebis Xiaojing Yuan Sushil J. Louis

We consider the problem of gender classification from frontal facial images using genetic feature subset selection. We argue that feature selection is an important issue in gender classification and demonstrate that Genetic Algorithms (GA) can select good subsets of features (i.e., features that encode mostly gender information), reducing the classification error. First, Principal Component Ana...

Journal: :Journal of Machine Learning Research 2004
Nicolò Cesa-Bianchi Claudio Gentile Andrea Tironi Luca Zaniboni

We study the problem of hierarchical classification when labels corresponding to partial and/or multiple paths in the underlying taxonomy are allowed. We introduce a new hierarchical loss function, the H-loss, implementing the simple intuition that additional mistakes in the subtree of a mistaken class should not be charged for. Based on a probabilistic data model introduced in earlier work, we...

2013
Behnaz Bigdeli Farhad Samadzadegan Peter Reinartz

With recent technological advances in remote sensing sensors and systems, very highdimensional hyperspectral data are available for a better discrimination among different complex landcover classes. However, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon or ‘curse of dimensionality’ in hyperspectral data sets. Moreover, ...

2012
I. JULIE DR. E. KIRUBAKARAN

The most important application of Microarray for gene expression analysis is used to discover or classify the unknown tissue samples with the help of known tissue samples. Several general purpose Data Mining Classification Techniques have been proposed recently and studied to predict/identify the cancer patterns. In this research work, we have focused and studied a few Classification Techniques...

2015
Jianming Zhang Yangchun Liu Wei Xu

The position of the hinge point of mitral annulus (MA) is important for segmentation, modeling and multimodalities registration of cardiac structures. The main difficulties in identifying the hinge point of MA are the inherent noisy, low resolution of echocardiography, and so on. This work aims to automatically detect the hinge point of MA by combining local context feature with additive suppor...

2013
Jörg Stork Ricardo Ramos Patrick Koch Wolfgang Konen

Support Vector Machines (SVM) are strong classifiers, but large data sets might lead to prohibitively long computation times and high memory requirements. SVM ensembles, where each single SVM sees only a fraction of the data, can be an approach to overcome this barrier. In continuation of related work in this field we construct SVM ensembles with Bagging and Boosting. As a new idea we analyze S...

2017
Sabri Boughorbel Fethi Jarray Mohammed El-Anbari

Data imbalance is frequently encountered in biomedical applications. Resampling techniques can be used in binary classification to tackle this issue. However such solutions are not desired when the number of samples in the small class is limited. Moreover the use of inadequate performance metrics, such as accuracy, lead to poor generalization results because the classifiers tend to predict the ...

2014
Ga Wu

Feature selection has proved to be an effective way to reduce the model complexity while giving a relatively desirable accuracy, especially, when data is scarce or the acquisition of some feature is expensive. However, the single selected model may not always generalize well for unseen test data whereas other models may perform better. Bayesian Model Averaging (BMA) is a widely used approach to...

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید