نتایج جستجو برای: sparse non
تعداد نتایج: 1367563 فیلتر نتایج به سال:
The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...
community detection is a task of fundamental importance in social network analysis. community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. there exist a variety of methods for community detection based on diffe...
Exploring the genetic diversity of microbes within the environment through metagenomic 5 sequencing first requires classifying these reads into taxonomic groups. Current methods compare these 6 sequencing data with existing biased and limited reference databases. Several recent evaluation studies 7 demonstrate that current methods either lack sufficient sensitivity for species-level assignments...
This study explores an approach for analysing the mirror (reflective) symmetry of 3D shapes with tensor based sparse decomposition. The approach combines non-negative tensor decomposition and directional texture synthesis, with symmetry information about 3D shapes that is represented by 2D textures synthesised from sparse, decomposed images. This technique requires the center of mass of 3D obje...
A non-negative least squares classifier is proposed in this paper for classifying under-complete data. The idea is that unknown samples can be approximated by sparse non-negative linear combinations of few training samples. Based on sparse coefficient vectors representing the training data, a sparse interpreter can then be used to predict the class label. We have devised new sparse methods whic...
Building on the recent breakthrough by Ogihara, we resolve a conjecture made by Hartmanis in 1978 regarding the (non) existence of sparse sets complete for P under logspace many-one reductions. We show that if there exists a sparse hard set for P under logspace many-one reductions, then P = LOGSPACE. We further prove that if P has a sparse hard set under many-one reductions computable in NC1, t...
The rapid developing area of compressed sensing suggests that a sparse vector lying in an arbitrary high dimensional space can be accurately recovered from only a small set of non-adaptive linear measurements. Under appropriate conditions on the measurement matrix, the entire information about the original sparse vector is captured in the measurements, and can be recovered using efficient polyn...
We discuss a method called quasi-sparse eigenvector diagonalization which finds the most important basis vectors of the low energy eigenstates of a quantum Hamiltonian. It can operate using any basis, either orthogonal or non-orthogonal, and any sparse Hamiltonian, either Hermitian, non-Hermitian, finite-dimensional, or infinite-dimensional. The method is part of a new computational approach wh...
In recent years, sparse coding has been widely used in many applications ranging from image processing to pattern recognition. Most existing sparse coding based applications require solving a class of challenging non-smooth and non-convex optimization problems. In this talk, I will review some proximal alternating algorithms for solving such problem and give rigorous convergence analysis. Exper...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید