نتایج جستجو برای: sigma connes amenability
تعداد نتایج: 26049 فیلتر نتایج به سال:
let and be banach algebras, , and . we define an -product on which is a strongly splitting extension of by . we show that these products form a large class of banach algebras which contains all module extensions and triangular banach algebras. then we consider spectrum, arens regularity, amenability and weak amenability of these products.
در ریاضیات، عمل مشتق گیری، اشتقاق گفته می شود. مبحث اشتقاق ها ارتباط نزدیکی با موضوع نیم گروه های یک پارامتری دارد. مولد بی نهایت کوچک نیم گروه های یک پارامتری در شرایط خاص، همان اشتقاق است. اکنون تعمیم هایی از اشتقاق ها را به صورت جبری در نظر می گیریم. $-sigma$اشتقاق هاو $-(sigma, au)$اشتقاق هاتعمیم هایی از اشتقاق می باشند، که تعمیم هایی از نیم گروه های یک پارامتری، مرتبط با ای...
Over a field of characteristic zero, we introduce two motivic operations on additive higher Chow cycles: analogues of the Connes boundary B operator and the shuffle product on Hochschild complexes. The former allows us to apply the formalism of mixed complexes to additive Chow complexes building a bridge between additive higher Chow theory and additive K-theory. The latter induces a wedge produ...
Nous cherchons à comprendre pourquoi la propriété (T) de Kazhdan [Kaz67, HV89, BHV08], et plus particulièrement une forme renforcée de celle-ci introduite dans [Laf08], sont un obstacle à une démonstration de la surjectivité de l’application de Baum-Connes à coefficients arbitraires pour des groupes ayant un élément γ de Kasparov, à l’aide des méthodes connues. Nous passons d’abord en revue tro...
We introduce the concept of para-Hopf algebroid and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Para-Hopf algebroids are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structures, ...
In [3], Connes found a conformal invariant using Wodzicki’s 1-density and computed it in the case of 4-dimensional manifold without boundary. In [14], Ugalde generalized the Connes’ result to n-dimensional manifold without boundary. In this paper, we generalize the results of [3] and [14] to the case of manifolds with boundary. Subj. Class.: Noncommutative global analysis; Noncommutative differ...
In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale grou...
In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale grou...
We consider natural representations of the Connes-Kreimer Lie algebras on rooted trees/Feynman graphs arising from Hecke correspondences in the categories LRF ,LFG constructed by K. Kremnizer and the author. We thus obtain the insertion/elimination representations constructed by Connes-Kreimer as well as an isomorphic pair we term top-insertion/top-elimination. We also construct graded finite-d...
We show that for any abelian topological group G and arbitrary diffused submeasure μ, every continuous action of L0(μ,G) on a compact space has a fixed point. This generalizes earlier results of Herer and Christensen, Glasner, Furstenberg and Weiss, and Farah and Solecki. This also answers a question posed by Farah and Solecki. In particular, it implies that if H is of the form L0(μ,R), then H ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید