نتایج جستجو برای: runge kutta methods
تعداد نتایج: 1875827 فیلتر نتایج به سال:
In this paper we introduce a new class of explicit one-step methods of order 2 that can be used for solving stiff problems. This class constitutes a generalization of the two-stage explicit Runge-Kutta methods, with the property of having an A-stability region that varies during the integration in accordance with the accuracy requirements. Some numerical experiments on classical stiff problems ...
Among the most popular methods for the solution of the Initial Value Problem are the Runge–Kutta pairs of orders 5 and 4. These methods can be derived solving a system of nonlinear equations for its coefficients. For achieving this, we usually admit various simplifying assumptions. The most common of them are the so called row simplifying assumptions. Here we negligible them and present an algo...
We study the application of Runge-Kutta schemes to Hamiltonian systems of ordinary differential equations. We investigate which schemes possess the canonical property of the Hamiltonian flow. We also consider the issue of exact conservation in the time-discretization of the continuous invariants of motion. Classification: AMS 65 L, 70H.
This paper discusses the use of extrapolation methods for the parallel solution of diierential algebraic equations. The DAEs investigated are implicit and have explicit constrains and the underlying methods used for the extrapolation are Runge-Kutta methods. An implementation is described and preliminary results are presented.
The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods.
An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that...
Abstract. In this paper, a numerical solution for the system described by a generalized fractional Rikitake system is presented. The first step in the proposed procedure is represent the fractional order Rikitake system as an equivalent system of ordinary differential equations. In the second step, we solved the system obtained in the first step by using the well known fourth order Runge-Kutta ...
Certain pairs of Runge-Kutta methods may be used additively to solve a system of n differential equations x' = J(t)x + g(t, x). Pairs of methods, of order p < 4, where one method is semiexplicit and /(-stable and the other method is explicit, are obtained. These methods require the LU factorization of one n X n matrix, and p evaluations of g, in each step. It is shown that such methods have a s...
We describe a construction of implicit two–step Runge–Kutta methods for ordinary differential equations in Nordsieck form and their continuous extensions. This representation allows accurate and reliable estimation of the local discretization errors and the application to differential equations with delays. Two stiffly accurate methods of order three with quadratic interpolants are derived, one...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید