نتایج جستجو برای: ricci flow
تعداد نتایج: 485713 فیلتر نتایج به سال:
Perelman [Pe02] has discovered a remarkable variational structure for the Ricci flow: it can be viewed as the gradient flow of the entropy functional λ. There are also two monotonicity formulas of shrinking or localizing type: the shrinking entropy ν, and the reduced volume. Either of these can be seen as the analogue of Huisken’s monotonicity formula for mean curvature flow [Hu90]. In various ...
In this short paper we show that non-negative Ricci curvature is not preserved under Ricci flow for closed manifolds of dimensions four and above, strengthening a previous result of Knopf for complete non-compact manifolds of bounded curvature. This brings down to four dimensions a similar result Böhm and Wilking have for dimensions twelve and above. Moreover, the manifolds constructed here are...
Let M be a compact n-dimensional manifold, n ≥ 2, with metric g(t) evolving by the Ricci flow ∂gij/∂t = −2Rij in (0, T ) for some T ∈ R + ∪ {∞} with g(0) = g0. Let λ0(g0) be the first eigenvalue of the operator −∆g0 + R(g0) 4 with respect to g0. We extend a recent result of R. Ye and prove uniform logarithmic Sobolev inequality and uniform Sobolev inequalities along the Ricci flow for any n ≥ 2...
In this paper we will prove a maximum principle for the solutions of linear parabolic equation on complete non-compact manifolds with a time varying metric. We will prove the convergence of the Neumann Green function of the conjugate heat equation for the Ricci flow in Bk × (0, T ) to the minimal fundamental solution of the conjugate heat equation as k → ∞. We will prove the uniqueness of the f...
Let g(t) be a family of smooth Riemannian metrics on an n-dimensional closed manifold M . Moreover, given a smooth closed Riemannian manifold (N, gN ) of arbitrary dimension, let φ(t) be a family of smooth maps from M to N . Then (g(t), φ(t)) is called a solution of the volume preserving Harmonic Ricci Flow (or Ricci Flow coupled with Harmonic Map Heat Flow), if it satisfies ∂tg = −2 Ricg + ...
We show how Ricci flow is related to quantum theory via Fisher information and the quantum potential.
In this article, we construct the canonical semipositive current or the canonical measure (= the potential of the canonical semipositive current) on a smooth projective variety of nonnegative Kodaira dimension in terms of a dynamical system of Bergman kernels. This current is considered to be a generalization of a Kähler-Einstein metric and coincides the one considered independently by J. Song ...
We study “warped Berger” solutions ( S1×S3, G(t) ) of Ricci flow: generalized warped products with the metric induced on each fiber {s}×SU(2) a left-invariant Berger metric. We prove that this structure is preserved by the flow, that these solutions develop finite-time neckpinch singularities, and that they asymptotically approach round product metrics in space-time neighborhoods of their singu...
In this paper, we prove that any non-flat ancient solution to KählerRicci flow with bounded nonnegative bisectional curvature has asymptotic volume ratio zero. We also classify all complete gradient shrinking solitons with nonnegative bisectional curvature. Both results generalize the corresponding earlier results of Perelman in [P1] and [P2]. The results then are applied to study the geometry ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید