نتایج جستجو برای: quantile unit root

تعداد نتایج: 533253  

Journal: :Statistical applications in genetics and molecular biology 2009
Veronica Vinciotti Keming Yu

In this paper, we explore the use of M-quantile regression and M-quantile coefficients to detect statistical differences between temporal curves that belong to different experimental conditions. In particular, we consider the application of temporal gene expression data. Here, the aim is to detect genes whose temporal expression is significantly different across a number of biological condition...

2012
Yanqin Fan Ruixuan Liu

This paper makes two main contributions. First, we construct “density-free” confidence intervals and confidence bands for conditional quantiles in nonparametric and semiparametric quantile regression models. They are based on pairs of symmetrized k-NN quantile estimators at two appropriately chosen quantile levels. In contrast to Wald-type confidence intervals or bands based on the asymptotic d...

Journal: :Applied mathematics and nonlinear sciences 2022

Abstract Taking the mixed cross-sectional data of large and medium-sized industrial enterprises in Shanghai from 2014 to 2021 as research sample, this paper empirically analyses impact government subsidies R&D investment on high-quality development manufacturing industry. First, quantile regression model is established analyse relationship among three factors, asymmetric linear loss functio...

Interrupted Time Series (ITS) analysis represents a powerful quasi-experime-ntal design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (...

2010
Jana Jurečková

The finite sample distributions of the regression quantile and of the extreme regression quantile are derived for a broad class of distributions of the model errors, even for the non-i.i.d case. The distributions are analogous to the corresponding distributions in the location model; this again confirms that the regression quantile is a straightforward extension of the sample quantile. As an ap...

2016
Nunzio Cappuccio Diego Lubian

In cointegration analysis, it is customary to test the hypothesis of unit roots separately for each single time series. In this note, we point out that this procedure may imply large size distortion of the unit root tests if the DGP is a VAR. It is well-known that univariate models implied by a VAR data generating process necessarily have a finite order MA component. This feature may explain wh...

2016
Yuan Yuan Nan Chen Shiyu Zhou

Quantile regression as an alternative to conditional mean regression (i.e., least square regression) is widely used in many areas. It can be used to study the covariate effects on the entire response distribution by fitting quantile regression models at multiple different quantiles or even fitting the entire regression quantile process. However, estimating the regression quantile process is inh...

2009
Toshiyuki Sueyoshi

This study proposes a new use of goal programming for empirically estimating a regression quantile hyperplane. The approach can yield regression quantile estimates that are less sensitive to not only non-Gaussian error distribut.ions but also a small sample size t.han conventional regression quantile methods. The performance of regression quantile estimates is compared with least absolute value...

2005
Ralf A. Wilke

Quantile regression methods are emerging as a popular technique in econometrics and biometrics for exploring the distribution of duration data. This paper discusses quantile regression for duration analysis allowing for a flexible specification of the functional relationship and of the error distribution. Censored quantile regression address the issue of right censoring of the response variable...

2013
Holger Dette

Quantiles play an essential role in modern statistics, as emphasized by the fundamental work of Parzen (1978) and Tukey (1977). Quantile regression was introduced by Koenker and Bassett (1978) as a complement to least squares estimation (LSE) or maximum likelihood estimation (MLE) and leads to far-reaching extensions of ”classical” regression analysis by estimating families of conditional quant...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید