We consider two families of weighted zero-sum constant for finite abelian groups. For a finite abelian group (G,+), a set of weights W ⊂ Z, and an integral parameter m, the m-wise Davenport constant with weights W is the smallest integer n such that each sequence over G of length n has at least m disjoint zero-subsums with weights W . And, for an integral parameter d, the d-constrained Davenpor...