نتایج جستجو برای: particle swarm algorithms
تعداد نتایج: 501446 فیلتر نتایج به سال:
The aim of this paper is to present the historical background of artificial life based stochastic optimization algorithms from the viewpoint of Neumann’s Self-reproduction scheme. The theory of evolutionary and swarm optimization are overviewed and compared from this viewpoint. A detailed application example is given to demonstrate how these tools can be applied to solve process optimization pr...
A generic constraint handling framework for use with any swarm-based optimization algorithm is presented. For swarm optimizers to solve constrained optimization problems effectively modifications have to be made to the optimizers to handle the constraints, however, these constraint handling frameworks are often not universally applicable to all swarm algorithms. A constraint handling framework ...
Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a ...
In this study we compare the performance of three evolutionary algorithms such as Genetic Algorithm (GA) Particle Swarm Optimization (PSO) and Ant-Colony Optimization (ACO) which are used to optimize the Artificial Neural Network (ANN). Optimization of Neural Networks improves speed of recall and may also improve the efficiency of training. Here we have used the Ant colony optimization, Particl...
Test functions play an important role in validating and comparing the performance of optimization algorithms. The test functions should have some diverse properties, which can be useful in testing of any new algorithm. The efficiency, reliability and validation of optimization algorithms can be done by using a set of standard benchmarks or test functions. For any new optimization, it is necessa...
Determination of optimum location for drilling a new well not only requires engineering judgments but also consumes excessive computational time. Additionally, availability of many physical constraints such as the well length, trajectory, and completion type and the numerous affecting parameters including, well type, well numbers, well-control variables prompt that the optimization approaches b...
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behavio...
abstract: this paper presents dynamic modelling and control of a linear prismatic series of elastic actuator. the capability of generating large torques is why this actuator is increasingly used in human-assistive robotic systems. due to having human in the loop, the actuator requires precise control. a fractional pid controller known for its improved performance is used for the control, due to...
This paper presents a method for improving steganography and enhancing the security using combinatorial Meta-heuristic algorithms. The goal is to achieve an improved PSNR value in order to preserve the image quality in the steganography process. Steganography algorithms, in order to insert message signal information inside the host data, create small changes based on the message signal in the ...
Particle swarm optimization (PSO) algorithm is a kind of random optimization algorithm based on swarm intelligence. Swarm intelligence of PSO is produced by cooperation and competition between particles, which is used for guiding optimization search. PSO has been studied widely in many applications due to its good global searching ability. Currently PSO has been widely used in function optimiza...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید