نتایج جستجو برای: pareto optimal solutions
تعداد نتایج: 686059 فیلتر نتایج به سال:
Multiagent learning literature has investigated iterated two-player games to develop mechanisms that allow agents to learn to converge on Nash Equilibrium strategy profiles. Such equilibrium configurations imply that no player has the motivation to unilaterally change its strategy. Often, in general sum games, a higher payoff can be obtained by both players if one chooses not to respond myopica...
1 Abstract Multi-objective optimization addresses problems with several design objectives, which are often conflicting, placing different demands on the design variables. In contradiction to traditional optimization methods, which combine all objectives into a single figure of merit, parallel optimization strategies such as evolutionary algorithms allow direct convergence to the Pareto front. T...
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
There is an increasing trend in the use of multi-objective evolutionary algorithms (MOEAs) to solve multi-objective optimization problems of the allocation of water resources. However, typically the outcome is a set of Pareto optimal solutions which make up a trade-off surface between the objective functions. For decision makers to choose a satisfactory alternative from a set of Pareto-optimal ...
This paper deals with biobjective combinatorial optimization problems where both objectives are required to be well-balanced. Lorenz dominance is a refinement of the Pareto dominance that has been proposed in economics to measure the inequalities in income distributions. We consider in this work the problem of computing the Lorenz optimal solutions to combinatorial optimization problems where s...
We deal with the problem of minimizing the expectation of a real valued random function over the weakly Pareto or Pareto set associated with a Stochastic MultiObjective Optimization Problem (SMOP) whose objectives are expectations of random functions. Assuming that the closed form of these expectations is difficult to obtain, we apply the Sample Average Approximation method (SAA-N, where N is t...
The problem of solving multi-objective linear-programming problems, by assuming that the decision maker has fuzzy goals for each of the objective functions, is addressed. Several methods have been proposed in the literature in order to obtain fuzzyefficient solutions to fuzzy multi-objective programming problems. In this paper we show that, in the case that one of our goals is fully achieved, a...
Design is a multi-objective decision-making process considering manufacturing, cost, aesthetics, usability among many other product attributes. The set of optimal solutions, the Pareto set, indicates the tradeoffs between objectives. Decision-makers generally select their own optima from the Pareto set based on personal preferences or other judgements. However, uncertainties from manufacturing ...
A multi-objective evolutionary algorithm (MOEA) approach is presented in this paper. The algorithm (DFBMOEA) aims to improve convergence of Paretobased MOEAs to the true Pareto optimal set/Pareto front and remove decision maker interaction from the process. A novel distance function is used as a fitness function for MOEA. A range equalisation function and a reference vector are utilised to elim...
Abstract: In multi-objective optimization problems, the optimization target is to obtain a set of non-dominated solutions. Comparing solution sets is crucial in evaluating the performances of different optimization algorithms. The use of performance indicators is common in comparing those sets and, subsequently, optimization algorithms. A good solution set must be close to the Pareto-optimal fr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید