In a graph, a vertex is simplicial if its neighborhood is a clique. For an integer k ≥ 1, a graph G = (VG, EG) is the k-simplicial power of a graph H = (VH , EH) (H a root graph of G) if VG is the set of all simplicial vertices of H , and for all distinct vertices x and y in VG, xy ∈ EG if and only if the distance inH between x and y is atmost k. This concept generalizes k-leaf powers introduce...