نتایج جستجو برای: non central principal component analysis

تعداد نتایج: 4632641  

Journal: :journal of advances in computer research 0
mohammad rajabi electrical and electronic engineering department, islamic azad university, south tehran branch, tehran, iran sedigheh ghofrani electrical and electronic engineering department, islamic azad university, south tehran branch, tehran, iran ahmad ayatollahi electrical engineering department, iran university of science and technology, tehran, iran

iris recognition is one of the most reliable methods for identification. in general, itconsists of image acquisition, iris segmentation, feature extraction and matching. among them, iris segmentation has an important role on the performance of any iris recognition system. eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. in this pa...

Journal: :ISPRS International Journal of Geo-Information 2016

Journal: :Environmental Management and Sustainable Development 2014

2000
Vic Brennan José Carlos Príncipe

This paper proposes Principal Component Analysis (PCA) to find adaptive bases for multiresolution. An input image is decomposed into components (compressed images) which are uncorrelated and have maximum l2 energy. With only minor modification, a single layer linear network using the Generalized Hebbian Algorithm (GHA) is used for multiresolution PCA. The decomposition has been successfully app...

2006
Wojciech Chojnacki Anton van den Hengel Michael J. Brooks

Generalised Principal Component Analysis (GPCA) is a recently devised technique for fitting a multicomponent, piecewise-linear structure to data that has found strong utility in computer vision. Unlike other methods which intertwine the processes of estimating structure components and segmenting data points into clusters associated with putative components, GPCA estimates a multi-component stru...

2007

Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...

Journal: :Neurocomputing 2003
Zhiyong Liu Lei Xu

In help of the Kohonen’s self-organizing maps we present a topological local principal component analysis model which is capable of exploiting both the global topological structure and each local cluster structure. A newly proposed self-organizing strategy that can enhance the learning speed is introduced to train the model. c © 2003 Elsevier B.V. All rights reserved.

Journal: :The annals of applied statistics 2009
Chong-Zhi Di Ciprian M Crainiceanu Brian S Caffo Naresh M Punjabi

The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilev...

2007
André Mas

Covariance operators of random functions are crucial tools to study the way random elements concentrate over their support. The principal component analysis of a random function X is well-known from a theoretical viewpoint and extensively used in practical situations. In this work we focus on local covariance operators. They provide some pieces of information about the distribution of X around ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید