نتایج جستجو برای: neural network modeling

تعداد نتایج: 1179043  

Journal: :فیزیک زمین و فضا 0
علیرضا حاجیان مربی، گروه فیزیک، دانشگاه آزاد اسلامی واحد نجف آباد، ایران وحید ابراهیم زاده اردستانی دانشیار، گروه فیزیک زمین، مؤسسة ژئوفیزیک دانشگاه تهران و قطب علمی مهندسی نقشه برداری و مقابله با سوانح طبیعی، تهران، ایران کار لوکاس استاد، دانشکده برق وکامپیوتر دانشگاه تهران وقطب علمی کنترل وپردازش هوشمند ،تهران،ایران

the method of artificial neural network is used as a suitable tool for intelligent interpretation of gravity data in this paper. we have designed a hopfield neural network to estimate the gravity source depth. the designed network was tested by both synthetic and real data. as real data, this artificial neural network was used to estimate the depth of a qanat (an underground channel) located at...

2010
Rahul P. Deshmukh

The artificial neural networks (ANNs) have been applied to various hydrologic problems recently. This research demonstrates static neural approach by applying Modular feedforward neural network to rainfall-runoff modeling for the upper area of Wardha River in India. The model is developed by processing online data over time using static modular neural network modeling. Methodologies and techniq...

Journal: :تحقیقات آب و خاک ایران 0
ایمان جوادزرین کارشناس ارشد، گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران. بابک متشرع زاده دانشیار گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

the aim followed in this study was to compare the performance of multiple regression vs neural network models to predict the activity of antioxidant enzymes super oxide dismutase (sod), cat alase (cat), ascorbate pero xidase (apx) and peroxidase (pox) in the shoots of wheat (triticum aestivum), alvand cultivar in a soil polluted with cadmium. the treatments consisted of four levels of cadmium (...

Journal: :پژوهش آب در کشاورزی 0
سکینه رضوی قلعه جوق دانشجوی سابق کارشناسی ارشد رشته علوم خاک، دانشکده کشاورزی، دانشگاه محقق اردبیلی. علی رسول زاده دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه محقق اردبیلی. محمدرضا نیشابوری استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز.

soil hydraulic properties such as soil water characteristic curve are necessary prerequisite for modeling water movement and solute transport. direct methods of estimating these hydraulic properties are time consuming and costly. indirect methods, such as pedotransfer functions, estimate the hydraulic parameters using easy-to-measure soil properties like particle size distributions, bulk densit...

2014
Zhang Feng

For the characteristics that a hypersonic vehicle has a large span of flight height and flight Mach number, and complicated flight environment, the model of which is highly nonlinear, unstable and multivariablecoupled, where using a single modelling approach is often difficult to achieve high modeling accuracy, hybrid modeling method is proposed to design its performance digital mock-up. The pe...

Journal: :iranian economic review 0

estimation (forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. thus, accuracy of the estimation is highly desirable. hibrid regression neural network is an approach proposed in this paper to obtain better fitness in comparison with regression analysis and the neural network methods. comparing the estimated resul...

Journal: :Advances in Production Engineering & Management 2013

2006
PIOTR TATJEWSKI MACIEJ ŁAWRYŃCZUK

The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network modeling to improve structural or computat...

2000
Brandon Rasmussen Robert E. Uhrig

This work presents an empirical modeling approach combining a bilinear modeling technique, Partial Least Squares, with the universal function approximation abilities of single hidden layer non-linear artificial neural networks. This approach, referred to as Neural Network Partial Least Squares, is compared to the common Autoassociative Artificial Neural Network. The Neural Network Partial Least...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید