نتایج جستجو برای: multiplication modules

تعداد نتایج: 83409  

Journal: :Humanistic Mathematics Network Journal 1999

Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over $R$, called $mbox{Max}$-injective and $mbox{Max}$-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of $X$-injective and strongly top modules to these classes of modules and obtain some related results.

‎We introduce a generalization of the notion of‎ depth of an ideal on a module by applying the concept of‎ local cohomology modules with respect to a pair‎ ‎of ideals‎. ‎We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules‎. ‎These kind of modules are different from Cohen--Macaulay modules‎, as an example shows‎. ‎Also an art...

Journal: :bulletin of the iranian mathematical society 2014
mahmood behboodi atefeh ghorbani seyed hossein shojaee

in this paper‎, ‎we introduce the notion of $(m,n)$-‎algebr‎aically compact modules as an analogue of algebraically‎ ‎compact modules and then we show that $(m,n)$-algebraically‎ ‎compactness‎ ‎and $(m,n)$-pure injectivity for modules coincide‎. ‎moreover‎, ‎further characterizations of a‎ ‎$(m,n)$-pure injective module over a commutative ring are given‎.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان فارس - دانشکده علوم پایه 1391

محور اصلی این پایان نامه، r- مدولهای a – انژکتیو می باشد که آنها را به عنوان یک تعمیم از مدول های انژکتیو معرفی می کنیم. در ابتدا مدول های انژکتیو را معرفی کرده، سپس برخی نتایج مهم وشناخته شده مدول های انژکتیو را به مدول های a – انژکتیو تعمیم می دهیم. در ادامه رابطه بین مدول های a – انژکتیو و حلقه های نوتری را بررسی می کنیم. پس هدف کلی این پایان نامه این است که با بررسی انژکتیو بودن ایده آله...

2007
Winfried Bruns

Several modules M over algebras with straightening law A have a structure which is similar to the structure of A itself: M has a system of generators endowed with a natural partial order, a standard basis over the ring B of coefficients, and the multiplication A × M → A satisfies a “straightening law”. We call them modules with straightening law, briefly MSLs. In section 1 we recall the notion ...

Journal: :bulletin of the iranian mathematical society 0
a. alhevaz tarbiat modares university a. moussavi tarbiat modares university

let $alpha$ be an endomorphism and $delta$ an $alpha$-derivationof a ring $r$.  in this paper we  study the relationship between an$r$-module $m_r$ and the  general polynomial module  $m[x]$ over theskew polynomial ring $r[x;alpha,delta]$. we introduce the notionsof skew-armendariz modules and skew quasi-armendariz modules whichare generalizations of $alpha$-armendariz modules and extend thecla...

2005
Jacques Thévenaz

This paper settles a problem raised at the end of the seventies by J.L. Alperin [Al1], E.C. Dade [Da] and J.F. Carlson [Ca1], namely the classification of torsion endo-trivial modules for a finite p-group over a field of characteristic p. Our results also imply, at least when p is odd, the complete classification of torsion endo-permutation modules. We refer to [CaTh] and [BoTh] for an overview...

Lifting modules and their various generalizations as some main concepts in module theory have been studied and investigated extensively in recent decades. Some authors tried to present some homological aspects of lifting modules and -supplemented modules. In this work, we shall present a homological approach to -supplemented modules via fully invariant submodules. Lifting modules and H-suppleme...

Journal: :bulletin of the iranian mathematical society 2011
z. zhu

we observe some new characterizations of $n$-presented modules. using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید