نتایج جستجو برای: mel frequency cepstral coefficients mfcc
تعداد نتایج: 584588 فیلتر نتایج به سال:
This chapter discusses the use of vocal tract information for recognizing the emotions. Linear prediction cepstral coefficients (LPCC) and mel frequency cepstral coefficients (MFCC) are used as the correlates of vocal tract information. In addition to LPCCs and MFCCs, formant related features are also explored in this work for recognizing emotions from speech. Extraction of the above mentioned ...
This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization feat...
We examine in some detail Mel Frequency Cepstral Coefficients (MFCCs) the dominant features used for speech recognition and investigate their applicability to modeling music. In particular, we examine two of the main assumptions of the process of forming MFCCs: the use of the Mel frequency scale to model the spectra; and the use of the Discrete Cosine Transform (DCT) to decorrelate the Mel-spec...
Every individual has some unique speaking style and this variation influences their speech characteristics. Speakers’ native dialect is one of the major factors influencing their speech characteristics that influence the performance of automatic speech recognition system (ASR). In this paper, we describe a method to identify Hindi dialects and examine the contribution of different acoustic-phon...
This paper describes two mechanisms that augment the common automatic speech recognition (ASR) front end and provide adaptation and isolation of local spectral peaks. A dynamic model consisting of a linear filterbank with a novel additive logarithmic adaptation stage after each filter output is proposed. An extensive series of perceptual forward masking experiments, together with previously rep...
Speaker’s audio is one of the unique identities speaker. Nowadays not only humans but machines can also identify by their audio. Machines different properties human voice and classify speaker from speaker’s Speaker recognition still challenging with degraded limited dataset. be identified effectively when feature extraction more accurate. Mel-Frequency Cepstral Coefficient (MFCC) mostly used me...
The problem of accent recognition has received a lot attention with the development Automatic Speech Recognition (ASR) systems. crux is that conventional acoustic language models adapted to fit standard corpora are unable satisfy requirements for accented speech. In this research, we contribute task group up nine European accents in English and try provide some evidence favor specific hyperpara...
In this paper, we proposed a weighted discrete K-nearest neighbor (weighted D-KNN) classification algorithm for detecting and evaluating emotion from Mandarin speech. In the experiments of the emotion recognition, Mandarin emotional speech database used contains five basic emotions, including anger, happiness, sadness, boredom and neutral, and the extracted acoustic features are Mel-Frequency C...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید