نتایج جستجو برای: mean square error
تعداد نتایج: 882384 فیلتر نتایج به سال:
The problem of parameter estimation in linear model is pervasive in signal processing and communication applications. It is often common to restrict attention to linear estimators, which simplifies the implementation as well as the mathematical derivations. The simplest design scenario is when the second order statistics of the parameters to be estimated are known and it is desirable to minimiz...
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
Sediment transport constantly influences river and civil structures and the lack ofinformation about its exact amount makes management efforts less effective. Hence,achieving a proper procedure to estimate the sediment load in rivers is important. We usedsupport vector machine model to estimate the sediments of the Kakareza River in LorestanProvince and the results were compared with those obta...
اندازه گیری رطوبت حجمی خاک و آب قابل دسترس برای گیاهان در رشته های مختلف مانند خاکشناسی، هیدرولوژی و مهندسی آب بسیار مهم است. بنابراین بررسی متعدد رطوبت خاک و میزان قابل استفاده آن برای گیاه از مهم ترین موضوعات در علم رابطه آب، خاک وگیاه است. برای تعیین رطوبت از روش های مختلفی مانند روش مستقیم (روش وزنی) و روش های غیر مستقیم مانند استفاده از دستگاه tdr و شبکه های هوش مصنوعی مانند شبکه عصبی، فاز...
This paper defines haw the quality of approximation used in the error transfer function analysis affects the accuracy of the resulting steady-state mean square error (MSE) of the Least-Mean-Square (LMS) adaptive filters. It shows that the error transfer function approach is very accurate for extremely narrow bandwidth input signals, and it deteriorates as the bandwidth of input signal increases.
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید