نتایج جستجو برای: malonyl
تعداد نتایج: 1296 فیلتر نتایج به سال:
Fatty acid synthetase complex (Mr = 500,000) purified from pigeon liver homogenates is inactivated by phenylmethylsulfonyl fluoride. A well characterized inhibitor of serine esterases. Pseudounimolecular kinetics are followed at all inhibitor concentrations studied (0.05 to 1.0 mM). The second order rate constant obtained at pH 7.0, 30 degrees in 0.05 M potassium phosphate, 1 mM EDTA is 250 plu...
Abdominal obesity and physical inactivity are associated with insulin resistance in humans and contribute to the development of type 2 diabetes. Likewise, sustained increases in the concentration of malonyl coenzyme A (CoA), an inhibitor of fatty-acid oxidation, have been observed in muscle in association with insulin resistance and type 2 diabetes in various rodents. In the present study, we a...
that cardiac decompensation can be avoided in MCD-deficient patients. Finally, by analogy with fatty acid oxidation disorders such as medium-chain acyl-CoA dehydrogenase deficiency (13), one may conclude that knowledge of the diagnosis will improve outcome because early intervention is then possible in catabolic episodes that otherwise may lead to metabolic derange-ment. It therefore seems reas...
The two isoforms of carnitine palmitoyltransferase I (CPT I; muscle (M)- and liver (L)-type) of the mitochondrial outer membrane have distinct kinetic characteristics with respect to their affinity for one of the substrates (l-carnitine) and the inhibitor malonyl-CoA. Moreover, they differ markedly in their hysteretic behavior with respect to malonyl-CoA and in their response to changes in the ...
Liver acetyl-CoA carboxylase, a biotin-enzyme which catalyzes the ATP-dependent carboxylation of acetyl-CoA (acceptor) to form malonyl-CoA (carboxylated acceptor), decarboxylates malonyl-CoA by a biotin-dependent, as well as a biotin-independent mechanism. Neither ADP, Pi, nor divalent metal ion are required for either of these abortive decarboxylations. The biotin-dependent reaction is blocked...
Studies in rats suggest that increases in fatty acid oxidation in skeletal muscle during exercise are related to the phosphorylation and inhibition of acetyl-CoA carboxylase (ACC), and secondary to this, a decrease in the concentration of malonyl-CoA. Studies in human muscle have not revealed a consistent decrease in the concentration of malonyl-CoA during exercise; however, measurements of ACC...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید