نتایج جستجو برای: lie ideal
تعداد نتایج: 131528 فیلتر نتایج به سال:
Reduction is a process that uses symmetry to lower the order of a Hamiltonian system. The new variables in the reduced picture are often not canonical: there are no clear variables representing positions and momenta, and the Poisson bracket obtained is not of the canonical type. Specifically, we give two examples that give rise to brackets of the noncanonical Lie–Poisson form: the rigid body an...
In this paper we study the lattice of restricted subalgebras a Lie algebra. particular, consider those algebras in which is dually atomistic, lower or upper semimodular, every subalgebra quasi-ideal. The fact that there are one-dimensional not results some these conditions being weaker than for corresponding non-restricted case.
let $l$ be a completely regular frame and $mathcal{r}l$ be the ring of continuous real-valued functions on $l$. we show that the lattice $zid(mathcal{r}l)$ of $z$-ideals of $mathcal{r}l$ is a normal coherent yosida frame, which extends the corresponding $c(x)$ result of mart'{i}nez and zenk. this we do by exhibiting $zid(mathcal{r}l)$ as a quotient of $rad(mathcal{r}l)$, the ...
in this paper, lie group structure and lie algebra structure of unit complex 3-sphere are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of and the special complex unitary matrices (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers . the relat...
Let M0 = G0/H be a (n+1)-dimensional Cahen-Wallach Lorentzian symmetric space associated with a symmetric decomposition g0 = h + m and let S(M0) be the spin bundle defined by the spin representation ρ : H → GLR(S) of the stabilizer H . This article studies the superizations of M0, i.e. its extensions to a homogeneous supermanifold M = G/H whose sheaf of superfunctions is isomorphic to Λ(S∗(M0))...
using the riemann-liouville fractional differintegral operator, the lie theory is reformulated. the fractional poisson bracket over the fractional phase space as 3n state vector is defined to be the fractional lie derivative. its properties are outlined and proved. a theorem for the canonicity of the transformation using the exponential operator is proved. the conservation of its generator is p...
We develop the notion of deformations using a valuation ring as ring of coefficients. This permits to consider in particular the classical Gerstenhaber deformations of associative or Lie algebras as infinitesimal deformations and to solve the equation of deformations in a polynomial frame. We consider also the deformations of the enveloping algebra of a rigid Lie algebra and we define valued de...
The symplectic and Poisson structures on reduced phase spaces are reviewed, including the symplectic structure on coadjoint orbits of a Lie group and the Lie-Poisson structure on the dual of a Lie algebra. These results are applied to plasma physics. We show in three steps how the Maxwell-Vlasov equations for a collisionless plasma can be written in Hamiltonian form relative to a certain Poisso...
This is an entirely expository piece: the main results discussed are very wellknown and the approach we take is not really new, although the presentation may be somewhat different to what is in the literature. The author’s main motivation for writing this piece comes from a feeling that the ideas deserve to be more widely known. Let g be a Lie algebra over R or C. . A vector subspace I ⊂ g is a...
Abstract We introduce and study multivariate zeta functions enumerating subrepresentations of integral quiver representations. For nilpotent such representations defined over number fields, we exhibit a homogeneity condition that prove to be sufficient for local functional equations the generic Euler factors these functions. This generalizes unifies previous work on submodule including, specifi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید