نتایج جستجو برای: lasso
تعداد نتایج: 4548 فیلتر نتایج به سال:
We propose a computationally intensive method, the random lasso method, for variable selection in linear models. The method consists of two major steps. In step 1, the lasso method is applied to many bootstrap samples, each using a set of randomly selected covariates. A measure of importance is yielded from this step for each covariate. In step 2, a similar procedure to the first step is implem...
Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In Internationa...
We describe a fast method to eliminate features (variables) in l1-penalized least-square regression (or LASSO) problems. The elimination of features leads to a potentially substantial reduction in running time, especially for large values of the penalty parameter. Our method is not heuristic: it only eliminates features that are guaranteed to be absent after solving the LASSO problem. The featu...
We study the problem of variable selection for linear transformation models, a class of general semiparametric models for censored survival data. The penalized marginal likelihood methods with shrinkage-type penalties are proposed to automate variable selection in linear transformation models; we consider the LASSO penalty and propose a new penalty called the adaptive-LASSO (ALASSO). Unlike the...
We propose a new sparse regression method called the component lasso, based on a simple idea. The method uses the connected-components structure of the sample covariance matrix to split the problem into smaller ones. It then applies the lasso to each subproblem separately, obtaining a coefficient vector for each one. Finally, it uses non-negative least squares to recombine the different vectors...
This paper proposes a new two stage least squares (2SLS) estimator which is consistent and asymptotically normal in the presence of many weak and irrelevant instruments and heteroskedasticity. In the first stage the estimator uses an adaptive absolute shrinkage and selection operator (LASSO) that selects the relevant instruments with high probability. However, the adaptive LASSO estimates have ...
Ribosomally synthesized and post-translationally modified peptide (RiPP) natural products are attractive for genome-driven discovery and re-engineering, but limitations in bioinformatic methods and exponentially increasing genomic data make large-scale mining of RiPP data difficult. We report RODEO (Rapid ORF Description and Evaluation Online), which combines hidden-Markov-model-based analysis,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید