نتایج جستجو برای: invariant ring
تعداد نتایج: 197865 فیلتر نتایج به سال:
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
In this paper we study the ring of graph invariants, focusing mainly on the invariants of simple graphs. We show that all other invariants, such as sorted eigenvalues, degree sequences and canonical permutations, belong to this ring. In fact, every graph invariant is a linear combination of the basic graph invariants which we study in this paper. To prove that two graphs are isomorphic, a numbe...
--Traffic sign recognition usually consists of two parts : detection and classification. In this paper we describe the classification stage using ring partitioned method. In this method, first the RGB image is converted into gray scale image using color thresholding and histogram specification technique. This gray scale image, called as specified gray scale image is invariant to the illuminatio...
Nakayama (Ann. of Math. 42, 1941) showed that over an artinian serial ring every module is a direct sum of uniserial modules. Hence artinian serial rings have the property that each right (left) ideal is a finite direct sum of quasi-injective right (left) ideals. A ring with the property that each right (left) ideal is a finite direct sum of quasi-injective right (left) ideals will be called a ...
We study the affine ring of the affine Jacobi variety of a hyper-elliptic curve. The matrix construction of the affine hyper-elliptic Jacobi varieties due to Mumford is used to calculate the character of the affine ring. By decomposing the character we make several conjectures on the cohomology groups of the affine hyper-elliptic Jacobi varieties. In the integrable system described by the famil...
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
Invariance principles is one of the ways to summarize sample information and by these principles invariance or equivariance decision rules are used. In this paper, first, the methods for finding the maximal invariant function are introduced. As a new method, maximal invariant statistics are constructed using equivariant functions. Then, using several equivariant functions, the maximal invariant...
in this work, we investigate the transfer of some homological properties from a ring $r$ to its amalgamated duplication along some ideal $i$ of $r$ $rbowtie i$, and then generate new and original families of rings with these properties.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید