نتایج جستجو برای: hyers ulam rassiasstability
تعداد نتایج: 2078 فیلتر نتایج به سال:
In this paper, we investigate the generalized Hyers–Ulam stability for the functional equation f(ax+y)+af(y−x)− a(a+ 1) 2 f(x)− a(a+ 1) 2 f(−x)− (a+1)f(y) = 0 in non-Archimedean normed spaces. Mathematics Subject Classification: 39B52, 39B82
In the present paper, the Hyers-Ulam stability and also the superstability of double centralizers and multipliers on Banach algebras are established by using a fixed point method. With this method, the condition of without order on Banach algebras is no longer necessary.
A familiar functional equation f(ax+b) = cf(x) will be solved in the class of functions f : R → R. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f ( a1x1+···+amxm+x0 )= m ∑ i=1 bif ( ai1x1+···+aimxm ) in connection with the question of Rassias and Tabor.
In this paper, we obtain the general solution and investigate the Hyers-Ulam-Rassias stability of the functional equation f(ax− y)± af(x± y) = (a± 1)[af(x)± f(y)] in non-Archimedean -fuzzy normed spaces. Mathematics Subject Classification: 39B55, 39B52, 39B82
We solve the inhomogeneous differential equation of the form y 2xy − 2ny ∞ m0 a m x m , where n is a nonnegative integer, and apply this result to the proof of a local Hyers-Ulam stability of the differential equation y 2xy − 2ny 0 in a special class of analytic functions.
In this paper, we define a generalized additive set-valued functional equation, which is related to the following generalized additive functional equation: f (x 1 + · · · + x l) = (l – 1)f x 1 + · · · + x l–1 l – 1 + f (x l) for a fixed integer l with l > 1, and prove the Hyers-Ulam stability of the generalized additive set-valued functional equation.
Using the fixed point method, we establish a generalized Ulam Hyers stability result for the monomial functional equation in the setting of complete random p-normed spaces. As a particular case, we obtain a new stability theorem for monomial functional equations in β-normed spaces.
in this paper, we prove the generalized hyers-ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-archimedean $mathcal{l}$-fuzzy normed spaces.
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
Under what conditions does there exist a group homomorphism near an approximate group homomorphism? This question concerning the stability of group homomorphisms was posed by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 on Banach spaces. In 1950 Aoki 3 provided a generalization of the Hyers’ theorem for additive mappings and in 1978 Th. M. Rassias 4 generalized the...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید