نتایج جستجو برای: hashing
تعداد نتایج: 4633 فیلتر نتایج به سال:
Randomly hashing multiple features into one aggregated feature is routinely used in largescale machine learning tasks to both increase speed and decrease memory requirements, with little or no sacrifice in performance. In this paper we investigate whether using a learned (instead of a random) hashing function improves performance. We show experimentally that with increasing difference between t...
We present the Balloon password-hashing algorithm. This is the first practical cryptographic hash function that: (i) has proven memory-hardness properties in the random-oracle model, (ii) uses a password-independent access pattern, and (iii) meets or exceeds the performance of the best heuristically secure password-hashing algorithms. Memory-hard functions require a large amount of working spac...
Approximate Nearest Neighbor (ANN) methods such as Locality Sensitive Hashing, Semantic Hashing, and Spectral Hashing, provide computationally efficient procedures for finding objects similar to a query object in large datasets. These methods have been successfully applied to search web-scale datasets that can contain millions of images. Unfortunately, the key assumption in these procedures is ...
The ability of fast similarity search at large scale is of great importance to many Information Retrieval (IR) applications. A promising way to accelerate similarity search is semantic hashing which designs compact binary codes for a large number of documents so that semantically similar documents are mapped to similar codes (within a short Hamming distance). Since each bit in the binary code f...
Minwise hashing is the standard technique in the context of search and databases for efficiently estimating set (e.g., high-dimensional 0/1 vector) similarities. Recently, b-bit minwise hashing was proposed which significantly improves upon the original minwise hashing in practice by storing only the lowest b bits of each hashed value, as opposed to using 64 bits. b-bit hashing is particularly ...
Hashing-based methods seek compact and efficient binary codes that preserve the neighborhood structure in the original data space. For most existing hashing methods, an image is first encoded as a vector of hand-crafted visual feature, followed by a hash projection and quantization step to get the compact binary vector. Most of the hand-crafted features just encode the low-level information of ...
Hashing techniques have become very popular to solve the content-based image retrieval problem in gigantic image databases because they allow to represent feature vectors using compact binary codes. Binary codes provide speed and are memory-efficient. Different approaches have been taken by researchers, some of them based on the Spectral Hashing objective function, among these the recently prop...
Perceptual hashing is conventionally used for content identification and authentication. It has applications in database content search, watermarking and image retrieval. Most countermeasures proposed in the literature generally focus on the feature extraction stage to get robust features to authenticate the image, but few studies address the perceptual hashing security achieved by a cryptograp...
Advanced hashing technique is essential in large scale online image retrieval and organization, where image contents are frequently changed. While traditional multi-view hashing method has achieve promising effectiveness, its batch-based learning based scheme largely leads to very expensive updating cost. Meanwhile, existing online hashing scheme generally focuses on single-view data. Good effe...
Hashing techniques have been intensively investigated for large scale vision applications. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, most existing supervised hashing methods only construct similarity-preserving hash codes. Observing that semantic structures carry complementary information, we propose the idea of cotraining for ha...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید