نتایج جستجو برای: gaussian mixed model gmm
تعداد نتایج: 2329145 فیلتر نتایج به سال:
A hybrid Hidden Markov Model (HMM) Gaussian Mixture Model (GMM) system was proposed to automatically select tokens of /iau/, /ai/, /ei/, /m/ and /n/ in a database of recordings of Standard-Chinese speech collected under studio-clean, mobile-landline degraded and mismatched recording conditions. The FVC systems constructed were all MFCC GMM-UBM systems, but based on different portions of the rec...
We consider recursive Bayesian filtering where the posterior is represented as a Gaussian mixture model (GMM), and the likelihood function as a sum of scaled Gaussians (SSG). In each iteration of filtering, the number of components increases. We propose an algorithm for simplifying a GMM into a reduced mixture model with fewer components, which is based on maximizing a variational lower bound o...
The performance of voice conversion has been considerably improved through statistical modeling of spectral sequences. However, the converted speech still contains traces of artificial sounds. To alleviate this, it is necessary to statistically model a source sequence as well as a spectral sequence. In this paper, we introduce STRAIGHT mixed excitation to a framework of the voice conversion bas...
As a new learning framework, Multi-Instance learning is labeled recently and has successfully found application in vision classification. A novel Multi-instance bag generating method is presented in this paper on basis of Gaussian Mixed Model. The generated GMM model composes not only color but also the locally stable unchangeable components. It is frequently named as MI bag by researchers. Bes...
The Bayesian inference approach to the inverse problem of spectral signal recovery has been extended to mixtures of Gaussian probability distributions of a training dataset in order to increase the efficiency of estimating the spectral signal from the response of a transformation system. Bayesian (BIC) and Akaike (AIC) information criteria were assessed in order to provide the Gaussian mixture ...
In this paper we investigate the Gaussian Mixture Model (GMM) framework for adaptation of context-dependent deep neural network HMM (CD-DNN-HMM) acoustic models. In the previous work an initial attempt was introduced for efficient transfer of adaptation algorithms from the GMM framework to DNN models. In this work we present an extension, further detailed exploration and analysis of the method ...
Feature selection is a critical step for pattern recognition and many other applications. Typically, feature selection strategies can be categorized into wrapper and filter approaches. Filter approach has attracted much attention because of its flexibility and computational efficiency. Previously, we have developed an ICA-MI framework for feature selection, in which the Mutual Information (MI) ...
Large vocabulary continuous speech recognition systems are known to be computationally intensive. A major bottleneck is the Gaussian mixture model (GMM) computation and various techniques have been proposed to address this problem. We present a systematic study of fast GMM computation techniques. As there are a large number of these and it is impractical to exhaustively evaluate all of them, we...
This paper proposes a method of predicting the formant frequencies of a frame of speech from its mel-frequency cepstral coefficient (MFCC) representation. Prediction is achieved through the creation of a Gaussian mixture model (GMM) which models the joint density of formant frequencies and MFCCs. Using this GMM and an input MFCC vector, a maximum a posteriori (MAP) prediction of the formant fre...
This paper describes the acoustic-to-articulatory inversion mapping using a Gaussian Mixture Model (GMM). Correspondence of an acoustic parameter and an articulatory parameter is modeled by the GMM trained using the parallel acousticarticulatory data. We measure the performance of the GMMbased mapping and investigate the effectiveness of using multiple acoustic frames as an input feature and us...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید