نتایج جستجو برای: garch model jel classification
تعداد نتایج: 2504327 فیلتر نتایج به سال:
Since ARCH and GARCH models are presented, more and more authors are interested in the study of volatilities in financial markets with GARCH models. Method for estimating the coefficients of GARCH models is mainly the maximum likelihood estimation. Now we consider another method—MCMC method to substitute for maximum likelihood estimation method. Then we compare three GARCH models based on it. M...
This paper is mainly talking about several volatility models and its ability to predict and capture the distinctive characteristics of conditional variance about the empirical financial data. In my paper, I choose basic GARCH model and two important models of the GARCH family which are E-GARCH model and GJR-GARCH model to estimate. At the same time, in order to acquire the forecasting performan...
We propose a new method for pricing options based on GARCH models with filtered historical innovations. In an incomplete market framework we allow for different distributions of the historical and the pricing return dynamics enhancing the model flexibility to fit market option prices. An extensive empirical analysis based on S&P 500 index options shows that our model outperforms other competing...
In this paper we survey time series models allowing for conditional heteroscedas ticity and autoregression like AR GARCH type models These models reduce to a white noise model when some of the conditional heteroscedasticity parameters take their boundary value at zero and the autoregressive component is in fact not present We reproduce the asymptotic distribution of the pseudo log likelihood ra...
One of the most used methods to forecast price volatility is the generalized autoregressive conditional heteroskedasticity (GARCH) model. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted to improve forecasting models employing a variety of techniques. In this paper, we extend the field of expert systems, forecasting, and mode...
We propose a new method for pricing options based on GARCH models with filtered historical innovations. In an incomplete market framework, we allow for different distributions of historical and pricing return dynamics enhancing the model flexibility to fit market option prices. An extensive empirical analysis based on S&P 500 index options shows that our model outperforms other competing GARCH ...
Economic and financial time series typically exhibit time varying conditional (given the past) standard deviations and correlations. The conditional standard deviation is also called the volatility. Higher volatilities increase the risk of assets, and higher conditional correlations cause an increased risk in portfolios. Therefore, models of time varying volatilities and correlations are essent...
This paper estimates the dynamic conditional correlations in the returns on Tapis oil spot and onemonth forward prices for the period 2 June 1992 to 16 January 2004, using recently developed multivariate conditional volatility models, namely the Constant Conditional Correlation Multivariate GARCH (CCCMGARCH) model of Bollerslev [1990], Vector Autoregressive Moving Average – GARCH (VARMAGARCH) m...
The current paper proposes a conditional volatility model with time varying coefficients based on a multinomial switching mechanism. By giving more weight to either the persistence or shock term in a GARCH model, conditional on their relative ability to forecast a benchmark volatility measure, the switching reinforces the persistent nature of the GARCH model. Estimation of this volatility targe...
In this paper, we introduce a new GARCH model with an infinitely divisible distributed innovation, referred to as the rapidly decreasing tempered stable (RDTS) GARCH model. This model allows the description of some stylized empirical facts observed for stock and index returns, such as volatility clustering, the non-zero skewness and excess kurtosis for the residual distribution. Furthermore, we...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید