نتایج جستجو برای: garch bekk

تعداد نتایج: 4179  

2011
Beth Andrews

We consider a rank-based technique for estimating GARCH model parameters, some of which are scale transformations of conventional GARCH parameters. The estimators are obtained by minimizing a rank-based residual dispersion function similar to the one given in Jaeckel (1972). They are useful for GARCH order selection and preliminary estimation. We give a limiting distribution for the rank estima...

2003
Koichi Maekawa Sangyeol Lee Yasuyoshi Tokutsu

In this paper, we demonstrate that most of Tokyo stock return data sets have volatility persistence and it is due to a parameter change in underlying GARCH models. For testing for a parameter change, we use the cusum test, devised by Lee et al. (2003), based on the residuals from GARCH models. A simulation study shows that a parameter change in GARCH models can mislead analysts to choose an IGA...

1998
G T Denison B K Mallick

We present a new approach to generalised autoregressive conditional het-eroscedasitic (GARCH) modelling for asset returns. Instead of attempting to choose a speciic distribution for the errors, as in the usual GARCH model formulation, we use a nonparametric distribution to estimate these errors. This takes into account the common problems encountered in nancial time series, for example, asymmet...

این پژوهش به بررسی رابطه بین نوسانات شاخص نرخ کرایه حمل و انتقال این نوسانات به شاخص بازار خرید و فروش کشتی‌ها می‌پردازد. کشتی‌های نوساز یا دست دوم، به عنوان کالای سرمایه‌ای خرید و فروش می‌شوند؛ اما از آنجائی که هزینه نگهداری کشتی بسیار بالاست، نرخ جاری کرایه حمل، مهمترین عامل تاثیر‌گذار در قیمت کشتی است. بنابراین، عوامل بازار باید درک صحیحی از نحوه عملکرد نوسانات نرخ کرایه حمل و تاثیر آن ب...

1998
BANI K. MALLICK

We present a new approach to generalised autoregressive conditional heteroscedasitic (GARCH) modelling for asset returns. Instead of attempting to choose a speciic distribution for the errors, as in the usual GARCH model formulation, we use a nonparametric distribution to estimate these errors. This takes into account the common problems encountered in nan-cial time series, for example, asymmet...

Journal: :Chaos 2013
Argentina Leite Ana Paula Rocha Maria Eduarda Silva

Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. Th...

2009
Felix Chan Billy Theoharakis

It is well known in the literature that the joint parameter estimation of the Smooth Autoregressive – Generalized Autoregressive Conditional Heteroskedasticity (STAR-GARCH) models poses many numerical challenges with unknown causes. This paper aims to uncover the root of the numerical difficulties in obtaining stable parameter estimates for a class of three-regime STAR-GARCH models using Quasi-...

2007
Yingfu Xie

Yingfu Xie. Maximum Likelihood Estimation and Forecasting for GARCH, Markov Switching, and Locally Stationary Wavelet Processes. Doctoral Thesis. ISSN 1652-6880, ISBN 978-91-85913-06-0. Financial time series are frequently met both in daily life and the scientific world. It is clearly of importance to study the financial time series, to understand the mechanism giving rise to the data, and/or p...

2014
MUHAMMAD SHERAZ Muhammad Sheraz

Recently, there has been a growing interest in the methods addressing volatility in computational finance and econometrics. Peiris et al. [8] have introduced doubly stochastic volatility models with GARCH innovations. Random coefficient autoregressive sequences are special case of doubly stochastic time series. In this paper, we consider some doubly stochastic stationary time series with GARCH ...

2008
Alexander M. Lindner

We collect some continuous time GARCH models and report on how they approximate discrete time GARCH processes. Similarly, certain continuous time volatility models are viewed as approximations to discrete time volatility models. 1 Stochastic volatility models and discrete GARCH Both stochastic volatility models and GARCH processes are popular models for the description of financial time series....

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید