نتایج جستجو برای: g row stochastic matrices
تعداد نتایج: 649119 فیلتر نتایج به سال:
Given an n-vertex graph G, the matrix Ω(G) = (In + L(G))−1 = (ωij) is called the doubly stochastic graph matrix of G, where In is the n × n identity matrix and L(G) is the Laplacian matrix of G. Let ω(G) be the smallest element of Ω(G). Zhang and Wu [X.D. Zhang and J.X. Wu. Doubly stochastic matrices of trees. Appl. Math. Lett., 18:339–343, 2005.] determined the tree T with the minimum ω(T ) am...
the cyclic products of matrices and diagonal similarity. In this paper we consider diagonal similarity for matrices, which may be infinite, and whose elements lie in a (possible non-commutative) group G with O. Let H be a subgroup of a group G and let A be an irreducible square matrix with entries in GO. In Theorem 3.4, we give necessary and sufficient conditions for the existence of a matrix B...
Several classes of structured matrices (e.g., the Hadamard-Sylvester matrices and the pseudo-noise matrices) are used in the design of error-correcting codes. In particular, the columns of matrices belonging to the above two matrix classes are often used as codewords. In this paper we show that the two above classes essentially coincide: the pseudo-noise matrices can be obtained from the Hadama...
Given an n-vertex graph G, the matrix Ω(G) = (In + L(G))−1 = (ωij) is called the doubly stochastic graph matrix of G, where In is the n × n identity matrix and L(G) is the Laplacian matrix of G. Let ω(G) be the smallest element of Ω(G). Zhang and Wu [X.D. Zhang and J.X. Wu. Doubly stochastic matrices of trees. Appl. Math. Lett., 18:339–343, 2005.] determined the tree T with the minimum ω(T ) am...
In this paper we obtain several results on the rank properties of Hadamard matrices (including Sylvester Hadamard matrices) as well as (generalized) Hadamard matrices. These results are used to show that the classes of (generalized) Sylvester Hadamard matrices and of generalized pseudo-noise matrices are equivalent, i.e., they can be obtained from each other by means of row/column permutations....
by a quasi-permutation matrix we mean a square matrix over the complex field c with non-negative integral trace. thus every permutation matrix over c is a quasipermutation matrix. for a given finite group g, let p(g) denote the minimal degree of a faithful permutation representation of g (or of a faithful representation of g by permutation matrices), let q(g) denote the minimal degree of a fait...
Two Hadamard matrices are considered equivalent if one is obtained from the other by a sequence of operations involving row or column permutations or negations. We complete the classification of Hadamard matrices of order 32. It turns out that there are exactly 13710027 such matrices up to equivalence. AMS Subject Classification: 05B20, 05B05, 05B30.
Some large rectangular matrices used in animal breeding are presented. We describe how to generate these matrices from the data supplied by animal breeders. The matrices are very sparse (3 nonzeros per row) and range between 26 20 and 968 652 582 694.
In this article a fast computational method is provided in order to calculate the Moore-Penrose inverse of full rank m× n matrices and of square matrices with at least one zero row or column. Sufficient conditions are also given for special type products of square matrices so that the reverse order law for the Moore-Penrose inverse is satisfied.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید