نتایج جستجو برای: fuzzy simpsons rule
تعداد نتایج: 238591 فیلتر نتایج به سال:
An extension of the Adaboost algorithm is proposed for obtaining fuzzy rule based classifiers from imprecisely perceived data. Isolated fuzzy rules are regarded as weak learners, and knowledge bases as ensembles. Rules are iteratively added to a base, and the search of the best rule at each iteration is carried out by a genetic algorithm driven by a fuzzy fitness function. The successive weight...
The poor scaling behavior of grid-partitioning fuzzy systems in case of increasing data dimensionality suggests using fuzzy systems with a scatter-partition of the input space. Jang has shown that zero-order Sugeno fuzzy systems are equivalent to radial basis function networks (RBFNs). Methods for nding scatter partitions for RBFNs are available, and it is possible to use them for creating scat...
This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the...
Fact Gathering means generating rule base from available numerical data or data base. The intelligence of a fuzzy system lies in its rule base. Generating rule base is one of the most important and difficult tasks when designing fuzzy systems. Various rule base generation methods are used such as Neural networks, genetic algorithms, biogeography based optimization approach, ant colony optimizat...
We had presented fuzzy rule generation methods by Genetic Algorithm. In this paper, we propose three methods to determine rule pairs for crossover in GA for fuzzy rules generation in order to improve search e ciency and reduction of the number of rules. The rst two methods are that rule pairs are determined based on a distance between rules of two individuals to be crossed. The third one is tha...
This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the...
The paper presents an evolutionary approach for generating fuzzy rule based classifier. First, a classification problem is divided into several two-class problems following a fuzzy unordered class binarization scheme; next, a fuzzy rule is evolved (not only the condition but the fuzzy sets are evolved (tuned) too) for each two-class problem using a Michigan iterative learning approach; finally,...
This paper discusses interpretability in two main categories of fuzzy systems fuzzy rule-based classifiers and interpolative fuzzy systems. Our goal is to show that the aspect of high level interpretability is more relevant to fuzzy classifiers, whereas fuzzy systems employed in modeling and control benefit more from low-level interpretability. We also discuss the interpretabilityaccuracy trade...
In practical signal detection scenarios, parameters of a random process are often uncertain. In this paper, we model such uncertainties as fuzzy parameters of a stationary random process. A fuzzy Neyman-Pearson hypothesis test concept which accepts any number of fuzzy parameters is presented. A suitable decision rule is developed by applying theory for ordering fuzzy numbers, and stated in term...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید