نتایج جستجو برای: fsl

تعداد نتایج: 738  

Journal: :IEEE Transactions on Geoscience and Remote Sensing 2022

Deep learning-based synthetic aperture radar (SAR) target recognition often suffers from sparsely distributed training samples and rapid angular variations due to scattering scintillation. Thus, data-driven SAR is considered a typical few-shot learning (FSL) task. This article first reviews the key issues of FSL provides definition A novel adversarial autoencoder (AAE) then proposed as an repre...

Journal: :Mathematics 2022

Cavity under urban roads has increasingly become a huge threat to traffic safety. This paper aims study cavity morphology characteristics and proposes deep learning (DL)-based classification method using the 3D ground-penetrating radar (GPR) data. Fine-tuning technology in DL can be used some cases with relatively few samples, but case of only one or very there will still overfitting problems. ...

2014
Maria del C. Valdés Hernández Jae-il Kim Ian Whiteford Xinyi Qiu Joanna M. Wardlaw Jinah Park

We propose a framework for assessing the hippocampi on stroke patients and studies of small vessel disease, where sclerosis, perivascular spaces and infarcts on this structure are common. It includes hippocampal and cavity segmentations, hippocampal shape modelling, feature characterisation and statistical analyses, all which have been particularly developed for assessing extreme abnormalities ...

Journal: :Remote Sensing 2021

The overall volume of freshwater entering the Arctic Ocean has been growing as glaciers melt and river runoff increases. Since 1980, a 20% increase in observed system. As discharges Ob, Yenisei, Lena rivers are an important source Kara Laptev Seas, discharge might have significant impact on upper ocean circulation. fresh water mixes with forms large freshened surface layer (FSL), which carries ...

Journal: :Proceedings of the ... AAAI Conference on Artificial Intelligence 2023

In few-shot unsupervised domain adaptation (FS-UDA), most existing methods followed the learning (FSL) to leverage low-level local features (learned from conventional convolutional models, e.g., ResNet) for classification. However, goal of FS-UDA and FSL are relevant yet distinct, since aims classify samples in target rather than source domain. We found that insufficient FS-UDA, which could int...

Journal: :IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2023

In cross-domain hyperspectral image (HSI) classification, the labeled samples of target domain are very limited, and it is a worthy attention to obtain sufficient class information from source categorize classes (both same new unseen classes). This article investigates this problem by employing few-shot learning (FSL) in meta-learning paradigm. However, most existing FSL methods extract statist...

Journal: :IEEE Transactions on Wireless Communications 2022

Increasing concerns on intelligent spectrum sensing call for efficient training and inference technologies. In this paper, we propose a novel federated learning (FL) framework, dubbed (FSL), which exploits the benefits of reconfigurable surfaces (RISs) overcomes unfavorable impact deep fading channels. Distinguishingly, endow conventional RISs with capabilities by leveraging fully-trained convo...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز 1389

در این پایان نامه، هدف ارائه روشی جهت ناحیه بندی خودکار تصاویر تشدید مغناطیسی مغز به سه بافت ماده سفید، ماده خاکستری و مایع مغزی-نخاعی می باشد. در روش ناحیه بندی ارائه شده، الگوریتم یادگیری مبتنی بر ماشین های بردار پشتیبان با قدرت طبقه بندی بالا و خطای عمومی سازی پایین به کار گرفته می شود. در این روش، الگوریتم کمترین مربعات به منظور تخمین تابع چگالی احتمال بافت ها انتخاب شده است. به منظور کاهش ...

Journal: :Proceedings of the ... AAAI Conference on Artificial Intelligence 2023

Recent Few-Shot Learning (FSL) methods put emphasis on generating a discriminative embedding features to precisely measure the similarity between support and query sets. Current CNN-based cross-attention approaches generate representations via enhancing mutually semantic similar regions of pairs. However, it suffers from two problems: CNN structure produces inaccurate attention map based local ...

2005
Yuanfu Xie S. E. Koch J. A. McGinley S. Albers N. Wang

A Space and Time Mesoscale Analysis System (STMAS) has been developed at Forecast Systems Laboratory (FSL) to generate a gridded analysis of surface observations. It is a three-dimensional variational analysis (3DVAR) of horizontal space and time instead of pressure or height levels. It is used to detect boundary layer phenomena, frontal zones, and various nonlinear phenomena, and has been used...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->