The sequence obtained to solve this problem—the celebrated Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, ...—appears in a large number of natural phenomena (see [2], [6]) and has natural applications in computer science (see [1]). Here we reformulate the rabbit problem to recover two generalizations of the Fibonacci sequence presented elsewhere (see [7], [8]). Then, using a fixed-point technique...