نتایج جستجو برای: evolutionary learning algorithm

تعداد نتایج: 1362310  

2011
Daan Bloembergen Michael Kaisers Karl Tuyls

Recently, an evolutionary model of Lenient Q-learning (LQ) has been proposed, providing theoretical guarantees of convergence to the global optimum in cooperative multi-agent learning. However, experiments reveal discrepancies between the predicted dynamics of the evolutionary model and the actual learning behavior of the Lenient Q-learning algorithm, which undermines its theoretical foundation...

Journal: :international journal of information science and management 0
k. salahshoor ph.d. , department of automation and instrumentation, petroleum university of technology, tehran m. r. jafari m.s. , department of automation and instrumentation, petroleum university of technology, tehran

this paper extends the sequential learning algorithm strategy of two different types of adaptive radial basis function-based (rbf) neural networks, i.e. growing and pruning radial basis function (gap-rbf) and minimal resource allocation network (mran) to cater for on-line identification of non-linear systems. the original sequential learning algorithm is based on the repetitive utilization of s...

Journal: :CoRR 2013
A. R. M. Jalal Uddin Jamali M. M. A. Hashem Md. Bazlar Rahman

Large set of linear equations, especially for sparse and structured coefficient (matrix) equations, solutions using classical methods become arduous. And evolutionary algorithms have mostly been used to solve various optimization and learning problems. Recently, hybridization of classical methods (Jacobi method and Gauss-Seidel method) with evolutionary computation techniques have successfully ...

2001
Frank Hoffmann

This paper presents a new boosting algorithm for genetic learning of fuzzy classification rules. The method is based on the iterative rule learning approach to fuzzy rule base system design. The fuzzy rule base is built in an incremental fashion, in that the evolutionary algorithm extracts one fuzzy classifier rule at a time. The boosting mechanism reduces the weight of those training instances...

Journal: :journal of computer and robotics 0
sahifeh poor ramezani kalashami faculty of engineering, department of artificial intelligence, mashhad branch, islamic azad university, mashhad, iran seyyed javad seyyed mahdavi chabok faculty of engineering, department of artificial intelligence, mashhad branch, islamic azad university, mashhad, iran

clustering is one of the known techniques in the field of data mining where data with similar properties is within the set of categories. k-means algorithm is one the simplest clustering algorithms which have disadvantages sensitive to initial values of the clusters and converging to the local optimum. in recent years, several algorithms are provided based on evolutionary algorithms for cluster...

Journal: :رادار 0
سیداحسان بنی هاشمی حمیدرضا غفاری

the main purpose in this paper, to express strong algorithmic optimization in their ability to detect expression target of sar that use in aircraft, plane and satellites to observe the target on the ground. for this purpose,the sar technology and its applications are introduced. previous algorithms used in this field with poor diagnosis and appropriate speed is low, like means and fuzzy and pso...

1999
Yoichiro Maeda

In this research, the evolutionary algorithm is applied to behavior learning of an individual agent in the multi-agent robot system. Each agent robot is given two behavior duties both collision avoidance from the other agent and target (food point) reaching for recovering self-energy. In this paper, we carried out the evolutionary simulation of the cooperative behavior creating an environmental...

The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...

2007
A. Abraham

Evolutionary computation has become an important problem solving methodology among many researchers. The population-based collective learning process, selfadaptation, and robustness are some of the key features of evolutionary algorithms when compared to other global optimization techniques. Even though evolutionary computation has been widely accepted for solving several important practical ap...

In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید