نتایج جستجو برای: divisible residuated lattice
تعداد نتایج: 96733 فیلتر نتایج به سال:
In this note, we continue the works in the paper [Some properties of L-fuzzy approximation spaces on bounded integral residuated lattices", Information Sciences, 278, 110-126, 2014]. For a complete involutive residuated lattice, we show that the L-fuzzy topologies generated by a reflexive and transitive L-relation satisfy (TC)L or (TC)R axioms and the L-relations induced by two L-fuzzy topologi...
Abstract The variety of (pointed) residuated lattices includes a vast proportion the classes algebras that are relevant for algebraic logic, e.g., $$\ell $$ ℓ -groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among outliers, one counts orthomodular and other varieties quantum algebras. We suggest ...
We discuss a formal many-valued logic called EQlogic which is based on a recently introduced special class of algebras called EQ-algebras. The latter have three basic binary operations (meet, multiplication, fuzzy equality) and a top element and, in a certain sense, generalize residuated lattices. The goal of EQ-logics is to present a possible direction in the development of mathematical logics...
It is shown that the Boolean center of complemented elements in a bounded integral residuated lattice characterizes direct decompositions. Generalizing both Boolean products and poset sums of residuated lattices, the concepts of poset product, Priestley product and Esakia product of algebras are defined and used to prove decomposition theorems for various ordered algebras. In particular, we sho...
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures l...
As an extension of interval-valued pseudo t-norms, pseudo-overlap functions (IPOFs) play a vital role in solving multi-attribute decision making problems. However, their corresponding algebraic structure has not been studied yet. On the other hand, with development non-commutative (non-associative) fuzzy logic, study residuated lattice theory is gradually deepening. Due to conditions operators ...
In this paper, we enlarge the language of triangle algebra by addinga unary operation that describes properties of a state. Thesestructure algebras are called state triangle algebra. The vitalproperties of these algebras are given. The notion of state interval-valued residuated lattice (IVRL)-filters are introduced and givesome examples and properties of them are given. ...
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures l...
The notion of exponential Dowling structures is introduced, generalizing Stanley’s original theory of exponential structures. Enumerative theory is developed to determine the Möbius function of exponential Dowling structures, including a restriction of these structures to elements whose types satisfy a semigroup condition. Stanley’s study of permutations associated with exponential structures l...
Lattice-valued semiuniform convergence structures are important mathematical in the theory of lattice-valued topology. Choosing a complete residuated lattice $L$ as background, we introduce new type filters using tensor and implication operations on $L$, which is called $\top$-filters. By means $\top$-filters, propose concept $\top$-semiuniform counterpart structures. Different from usual discu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید