Let X = (Xi,j)m×n,m ≥ n, be a complex Gaussian random matrix with mean zero and variance 1 n , let S = XX be a sample covariance matrix. In this paper we are mainly interested in the limiting behavior of eigenvalues when m n → γ ≥ 1 as n → ∞. Under certain conditions on k, we prove the central limit theorem holds true for the k-th largest eigenvalues λ(k) as k tends to infinity as n → ∞. The pr...