نتایج جستجو برای: dispersed subset non

تعداد نتایج: 1422493  

Journal: :Electr. J. Comb. 2003
Sergey Agievich

Let m + n particles be thrown randomly, independently of each other into N cells, using the following two-stage procedure. 1. The first m particles are allocated equiprobably, that is, the probability of a particle falling into any particular cell is 1/N . Let the ith cell contain mi particles on completion. Then associate with this cell the probability ai = mi/m and withdraw the particles. 2. ...

Journal: :Finite Fields and Their Applications 2012
Guizhen Zhu Daqing Wan

Let Fq be the finite field of q elements. Let H ⊆ Fq be a multiplicative subgroup. For a positive integer k and element b ∈ Fq, we give a sharp estimate for the number of k-element subsets of H which sum to b.

Journal: :J. Comb. Theory, Ser. A 2012
Jiyou Li Daqing Wan

In this paper, we obtain an explicit formula for the number of zero-sum k-element subsets in any finite abelian group.

2014
andPedro Jordano

1. Assessing dispersal events in plants faces important challenges and limitations. A methodological issue that limits advances in our understanding of seed dissemination by frugivorous animals is identifying ‘which species dispersed the seeds’. This is essential for assessing how multiple frugivore species contribute distinctly to critical dispersal events such as seed delivery to safe sites, ...

Journal: :Journal of Symplectic Geometry 2021

Let $\mathcal{E}^3\subset TM^n$ be a smooth $3$-distribution on manifold of dimension $n$ and $\mathcal{W}\subset\mathcal{E}$ line field such that $[\mathcal{W},\mathcal{E}]\subset\mathcal{E}$. Under some orientability hypothesis, we give necessary condition for the existence plane $\mathcal{D}^2$ $\mathcal{W}\subset\mathcal{D}$ $[\mathcal{D},\mathcal{D}]=\mathcal{E}$. Moreover study case where...

2007
Robert Milewski

In this paper n is a natural number. One can prove the following propositions: (1) For every non empty subset X of E2 T and for every compact subset Y of E2 T such that X ⊆ Y holds N-boundX ¬ N-boundY. (2) For every non empty subset X of E2 T and for every compact subset Y of E2 T such that X ⊆ Y holds E-boundX ¬ E-boundY. (3) For every non empty subset X of E2 T and for every compact subset Y ...

Journal: :bulletin of the iranian mathematical society 0
m. arezoomand department of‎ ‎mathematical sciences, isfahan university‎ ‎of technology‎, ‎p‎.‎o‎. ‎box 84156-83111, isfahan‎, ‎iran. b. taeri department of‎ ‎mathematical sciences, isfahan university‎ ‎of technology‎, ‎p‎.‎o‎. ‎box 84156-838111, isfahan‎, ‎iran.

‎let $g$ be a finite group‎. ‎an element $gin g$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $g$‎, ‎$chi(g)neq 0$‎. ‎the bi-cayley graph $bcay(g,t)$ of $g$ with respect to a subset $tsubseteq g$‎, ‎is an undirected graph with‎ ‎vertex set $gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin g‎, ‎ tin t}$‎. ‎let $nv(g)$ be the set‎ ‎of all non-vanishing element...

2013
Tamara Pozo-Rubio Amalia Capilla Jorge R. Mujico Giada de Palma Yolanda Sanz Isabel Polanco Maria Dolores García-Novo Gemma Castillejo Luis Ortigosa Luis Peña-Quintana Joan de Reus Joan de Deu Antonio Novais

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید