نتایج جستجو برای: cuo nanocrystalline
تعداد نتایج: 14467 فیلتر نتایج به سال:
In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP t...
The inelastic x-ray scattering spectrum for phonons of Δ(1) symmetry, including the CuO bond-stretching phonon dispersion, is analyzed by means of Lorentz fitting for HgBa(2)CuO(4) and Bi(2)Sr(2)CuO(6), using recently calculated phonon frequencies as input parameters. The resulting mode frequencies of the fit are almost all in good agreement with the calculated data. An exception is the case fo...
In this article, we introduce and provide details on a large-scale, cost-effective pathway to fabricating ultrahigh dense CuO nanowire arrays by thermal oxidation of Cu substrates in oxygen ambient. The CuO nanowires that are produced at ∼500 °C for ∼150 min feature an average length and diameter of ∼15 μm and ∼200 nm, respectively. The room temperature device-related characteristics such as tr...
BACKGROUND Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their anti...
We report transmission electron microscope observations that provide evidence of deformation twinning in plastically deformed nanocrystalline aluminum. The presence of these twins is directly related to the nanocrystalline structure, because they are not observed in coarse-grained pure aluminum. We propose a dislocation-based model to explain the preference for deformation twins and stacking fa...
Ultrathin copper oxide (CuO) nanorods with diameters of ∼3.6 nm were obtained in one step using oleylamine (OAm) as both the solvent and the surface controller. The oriented attachment is responsible for the formation of the ultrathin CuO nanorods. Furthermore, this ultrathin nanostructure catalyst exhibited excellent activity and high styrene oxide yields in styrene epoxidation.
Aligned CuO nanowires (NWs) were synthesized by a simple cost-effective oxidation method. They act as cores; high density CuO/ZnO core/shell heterostructure NWs were fabricated by thermal decomposition. Using the core/shell heterostructure NWs as a photoelectrode, a 0.71% photo-to-hydrogen conversion efficiency was obtained from photoelectrochemical water decomposition.
Solar light induced interfacial charge transfer of electrons from TiO2 to CuO in a water-glycerol mixture produced 99,823 μmol h(-1) g(-1)catalyst of hydrogen gas. The dispersed CuO/TiO2 photocatalyst in solution exhibited uni-directional electron flow and capture at the Schottky barrier facilitating charge separation and electron transfer resulting in enhanced H2 production performance.
UNLABELLED BACKGROUND CuO-TiO2 nanosheets (NSs), a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the sy...
The present study revealed a surprising valence transformation of copper (Cu) in the sintering process of mixtures of copper chloride dihydrate (CuCl(2)·2H(2)O) with β-cyclodextrin (β-CD) in ambient atmosphere. Such a transformation in Cu valence states can be modulated by changing the initial molar ratio (IMR) of CuCl(2)·2H(2)O to β-CD in the mixtures. Firstly, as the value of IMR decreased, t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید